Skip to main content
Log in

Undrained shear strength of clays as modified by pH variations

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The undrained shear strength of clays is an important geotechnical parameter used during construction processes. Several laboratory tests were performed on kaolinite and smectite mixed with pore fluids with different pH values. Vane shear tests were carried out and it was found that the undrained shear resistance for clays increased considerably if the pore fluid had a high or a low pH. A possible explanation could be the dissolution of Al3+ which acts as a coagulant, increasing the internal shear resistance. Geochemical computations, Al measurements and ζ-potential experiments were performed to confirm this theory. The research suggests varying the pH may make a useful contribution to soil improvement techniques.

Résumé

La résistance au cisaillement non drainé des argiles est un paramètre géotechnique important utilisé en phase de construction d’ouvrages. Plusieurs essais de laboratoire ont été mis en œuvre sur des kaolinites et des smectites préparées avec des fluides de différents pH. Des essais de cisaillement au scissomètre ont été réalisés et l’on a trouvé que la résistance au cisaillement non drainé des argiles augmente considérablement si le fluide interstitiel a un pH faible ou fort. Pour un pH faible, une explication possible pourrait venir de la dissolution des Al3+ qui agissent comme des coagulants, augmentant la résistance au cisaillement. Des calculs géochimiques, des mesures de teneur en Al et de potentiel ζ ont été réalisés pour confirmer cette théorie. Les résultats de cette recherche suggèrent que le fait de faire varier le pH de l’eau interstitielle peut contribuer utilement à l’amélioration de la résistance des sols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Avena MJ, De Pauli CP (1998) Proton adsorption and electrokinetics of an Argentinean montmorillonite. J Colloid Interface Sci 202:195–204

    Article  Google Scholar 

  • Benna M, Kbir-Ariguib N, Magnin A, Bergaya F (1999) Effect of pH on rheological properties of purified sodium bentonite suspensions. J Colloid Interface Sci 218:442–455

    Article  Google Scholar 

  • Bowders JJ, Daniel DE (1987) Hydraulic conductivity of compacted clay to dilute organic chemicals. J Geotech Eng 113:1432–1448

    Article  Google Scholar 

  • Brady PV, Walther JV (1989) Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C. Geochim Cosmochim Acta 53:2823–2830

    Article  Google Scholar 

  • Brandenburg U, Lagaly G (1988) Rheological properties of sodium montmorillonite dispersions. Appl Clay Sci 3:263–279

    Article  Google Scholar 

  • Broderick GP, Daniel DE (1990) Stabilizing compacted clay against chemical attack. J Geotech Eng 116(10):1549–1567

    Article  Google Scholar 

  • Cabrera F, Talibudeen O (1979) The release of aluminum from aluminosilicate minerals II. Acid–base potentiometric titrations. Clays Clay Miner 27(2):113–118

    Article  Google Scholar 

  • Das MB (2008) Advanced soil mechanics, Taylor and Francis, New York

  • Delgado A, Gonzalez-Caballero F, Bruque JM (1986) On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions. J Colloid Interface Sci 113:203–211

    Article  Google Scholar 

  • Di Maio C (1996) Exposure of bentonite to salt solution. Geotechnique 46:695–707

    Article  Google Scholar 

  • Dohnalová Ž, Svoboda L, Šulcová P (2008) Characterization of kaolin dispersion using acoustic and electroacoustic spectroscopy. J Min Metall 44:63–72

    Article  Google Scholar 

  • Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids. Particle size, zeta potential, rheology. Elsevier, Amsterdam

    Google Scholar 

  • Evangelou VP (1998) Environmental soil and water chemistry: principles and applications. Wiley, New York

  • Gajo A, Loret B (2007) The mechanics of active clays circulated by salts, acids and bases. J Mech Phys Solids 55:1762–1801

    Article  Google Scholar 

  • Gajo A, Maines M (2007) Mechanical effects of aqueous solutions in organic acids and bases on a natural active clay, Géotechnique 57(8):687–699

  • Galassi C, Costa AL, Pozzi P (2001) Influence of ionic environment and pH on the electrokinetic properties of ball clays. Clays and Clay Minerals 49(3):263–269

    Article  Google Scholar 

  • Ganor J, Cama J, Metz V (2003) Surface protonation data of kaolinite re-evaluation based on dissolution experiments. J Colloid Interface Sci 264:67–75

    Article  Google Scholar 

  • Gori U (1994) The pH influence on the index properties of clays. Bull Int Assoc Eng Geo 50:37–42

    Article  Google Scholar 

  • Gratchev IB, Sassa K (2009) Cyclic behavior of fine-grained soils at different pH values. J Geotech Geoenviron Eng ASCE 135(2):271–279

    Article  Google Scholar 

  • Gustafsson JP (2004) Visual MINTEQ 3.0 KTH Royal Institute of Technology. Stockholm, Sweden. http://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm

  • Hendershot WH, Courchesne F, Jeffries DS (1996) Aluminum geochemistry at the catchment scale in watersheds influenced by acidic precipitation. In: Sposito G (ed) The environmental chemistry of aluminum. Lewis Publishers, Boca Raton, pp 419–449

  • Huertas FJ, Chou L, Wollast R (1998) Mechanisms of kaolinite dissolution at room temperature and pressure: part 1. Surface speciation. Geochim Cosmochim Acta 62:417–431

    Article  Google Scholar 

  • Hunter RJ (1981) Zeta Potential in colloid science. Academic Press, London

    Google Scholar 

  • Israelachvili J (1991) Intermolecular and surface forces, Academic Press, New York

  • Jasmund K, Lagaly G (1993) Tonmineral und Tone. Steinkopff Verlag, Darmstadt

    Book  Google Scholar 

  • Kashir M, Yanful EK (2001) Hydraulic conductivity of bentonite permeated with acid mine drainage. Can Geotech J 38(5):1034–1048

    Article  Google Scholar 

  • Lin C, Coleman NT (1960) The measurement of exchangeable aluminum in soils and clays. Soil Sci Soc Am J 24:444–446

    Article  Google Scholar 

  • Lindsay WL, Walthall PM (1996) The solubility of aluminum in soils. In: Sposito G (ed) The environmental chemistry of aluminum. Lewis Publishers, Boca Raton, pp 333–361

  • Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays Clay Miner 47:386–388

    Article  Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of Soil Behavior. Wiley, New Jersey

  • Mkadam KM, Yonaha T, Ali VS, Tokuyama A (2006) Dissolved aluminum and silica release on the interaction of Okinawan subtropical red soil and seawater at different salinities: experimental and field observations. Geochem J 40:333–343

    Article  Google Scholar 

  • Narayanan S, Krishna K (1999) Structure activity relationship in Pd/hydrotalcite: effect of calcination of hydrotalcite on palladium dispersion and phenol hydrogenation. Catalysis Today 49:57–63

    Article  Google Scholar 

  • Nye P, Craig D, Coleman N, Ragland JL (1961) Ion exchange equilibrium involving aluminum. Soil Sci Soc Am J 25:14–17

    Article  Google Scholar 

  • Olson RE (1974) Shearing strengths of kaolinite, illite and montmorillonite. J Geotech Eng Div 100(11):1215–1229

    Google Scholar 

  • Padmasri AH, Venugopal A, Krishnamurthy J, Rama Rao KS, Kanta Rao P (2002) Novel calcined Mg-Cr hydrotalcite supported Pd catalysts for the hydrogenolysis of CCl2F2. J Mol Catal A Chem 8:73–80

    Article  Google Scholar 

  • Peterson SR, Gee GW (1985) Interactions between acidic solutions and clay liners: permeability and neutralization. In: Johnson AI, Frobel RK, Cavalli NJ, Petterson CB (eds)Hydraulic barriers in soil and rock. ASTM STP 874. American Society for Testing and Materials, Philadelphia

  • Ragland JL, Coleman NT (1960) The hydrolysis of aluminium salts in clay and soil systems. Soil Sci Soc Am J 24:457–460

    Article  Google Scholar 

  • Rand B, Pekenc E, Goodwin JW, Smith RW (1980) Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions. J Chem Soc Faraday Trans I 76:225–235

    Article  Google Scholar 

  • Reuss JO, Cosby BJ, Wright R (1987) Chemical processes governing soil and water acidification. Nature 329:27–31

    Article  Google Scholar 

  • Ruhl JL, Daniel DE (1997) Geosynthetic clay liners permeated with chemical solutions and leachates. J Geotech Geoenviron Eng 123(4):369–381

    Article  Google Scholar 

  • Saka EE, Güler C (2006) The effects of electrolyte concentration, ion species and pH on the zeta potential and electrokinetic charge density of montmorillonite. Clay Miner 41:853–861

    Article  Google Scholar 

  • Santamarina JC, Klein KA, Palomino A, Guimaraes MS (2002) Micro-scale aspects of chemo-mechanical coupling: Interparticle forces and fabric. In: Di Maio, Hueckel and Loret (eds) Chemo-mechanical coupling in clays: from nano-scale to engineering applications. Swets & Zeitlinger, Lisse

  • Schwertmann U, Jackson ML (1963) Hydrogen-aluminium clays: a third buffer range appearing in potentiometric titration. Science 139:1052–1053

    Article  Google Scholar 

  • Sondi I, Milat O, Pravdic V (1997) Electrokinetic potential of clay surfaces modified by polymers. J Colloid Interface Sci 189:66–73

    Article  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, Inc, Oxford

  • Sridharan A, Prakash K (1999) Mechanism controlling the undrained shear strength behaviour of clays. Can Geotech J 36(6):1030–1038

    Google Scholar 

  • Sridharan A, Rao SM, Murthy NS (1986) Liquid limit of montmorillonite soils. Geotech Test J 9(3):156–159

    Article  Google Scholar 

  • Sridharan A, Rao SM, Murthy NS (1988) Liquid limit of kaolinitic soils. Geotechnique 38(2):191–198

    Article  Google Scholar 

  • Szynkarczuk J, Kan J, AT Hassan T, Donini JC (1994) Electrochemical coagulation of clays suspensions. Clays Clay Miner 42(6):667–673

    Article  Google Scholar 

  • Tertre E, Castet S, Berger G, Loubet M, Giffaut E (2006) Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60°C: experimental and modelling study. Geochim Cosmochim Acta 70:4579–4599

    Article  Google Scholar 

  • Tombacz E, Szekeres M (2004) Colloidal behaviour of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl Clay Sci 27:75–94

    Article  Google Scholar 

  • van Olphen H (1963) Clay colloid chemistry. Interscience Publishing, New York, pp 16–29

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

  • Wang YH, Siu WK (2006) Structure characteristics and mechanical properties of kaolinite soils I. Surface charges and structural characterizations. Can Geotech J 43(6):587–600

    Article  Google Scholar 

  • White RE (1997) Principles and practice of soil science, Blackwell, Oxford

  • Wieland E, Stumm W (1992) Dissolution kinetics of kaolinite in acidic solutions at 25°C. Geochim Cosmochim Acta 56:3339–3355

    Article  Google Scholar 

Download references

Acknowledgments

This paper (publication number GEOTECH-1551) was written in conjunction with the INPROTUNNEL project, which was funded by the German Federal Ministry for Education and Research under the R&D programme “Geotechnologien”. The authors herewith acknowledge the support given by this institution. The Authors wish to thank Dorfner GmbH and HA Minerals GmbH who provided the materials used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Spagnoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spagnoli, G., Rubinos, D., Stanjek, H. et al. Undrained shear strength of clays as modified by pH variations. Bull Eng Geol Environ 71, 135–148 (2012). https://doi.org/10.1007/s10064-011-0372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0372-9

Keywords

Mots clés

Navigation