Skip to main content
Log in

Determination of the thermal conductivity from physico-mechanical properties

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Samples of limestone, dolomite, dolomitic limestone, marble, travertine, sandstone, siltstone, andesite, basalt and porous basalt from different parts of Turkey were tested to obtain their UCS, porosity, water absorption, density, P-wave velocity and thermal conductivity (TC). It was observed that while TC increased with density, P-wave velocity and UCS, it decreased with increasing porosity. Equations are presented to allow an assessment of TC from these physico-mechanical properties.

Résumé

Des échantillons de calcaire, dolomie, calcaire dolomitique, marbre, travertin, grès, siltite, basalte et lave basaltique de différentes régions de Turquie ont été testés pour déterminer la résistance à la compression simple, la porosité, la densité, la vitesse de propagation des ondes P, et la conductivité thermique. On a observé que la conductivité thermique augmente avec la densité, la vitesse des ondes P et la résistance à la compression simple, tandis qu’elle diminue avec l’augmentation de la porosité. Des équations sont présentées afin d’évaluer la conductivité thermique à partir des propriétés physiques et mécaniques des roches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson DL (1967) A seismic equation of state. Geophys J R Astron Soc 13:9–30

    Google Scholar 

  • ASTM C 1045-90 (1990) Practice for the calculation of thermal transmission properties from steady state heat flux measurements. American Society for Testing and Materials, Pennsylvania

  • ASTM C 1113-90 (1990) Test method for thermal conductivity of refractories by hot wire, Platinum Resistance Thermometer Technique. American Society for Testing and Materials, Philadelphia

  • Birch F (1961) The velocity of compression waves in rocks to 10 kbars (Part I) J. Geophys Res 66:2199–2224

    Article  Google Scholar 

  • British Standards Institute (1986) Determining thermal insulating properties, guarded hot plate method. Part 2: Sect. 2.1 BS 874

  • Çanakcı H, Demirboğa R, Karakoç BM, Şirin O (2007) Thermal conductivity of limestone from Gaziantep (Turkey). Build Environ 42:1777–1782

    Article  Google Scholar 

  • Harmathy TZ (1970) Thermal properties of concrete at elevated temperatures. J Mater 5:47–74

    Google Scholar 

  • Hasan A (1999) Optimising insulation thickness for buildings using life cycle cost. Appl Energy 63:115–124. Elsevier, Amsterdam

    Google Scholar 

  • Horai KI, Simmons G (1969) Thermal conductivity of rock forming minerals. Earth Planet Sci Lett 6:358–368

    Google Scholar 

  • Horai KI, Simmons G (1970) An empirical relationship between thermal conductivity and Debye temperature for silicates. J Geophys Res 75:978–982

    Article  Google Scholar 

  • ISRM (1972) Committee on Laboratory Tests. Suggested methods for determining water content, porosity, density, absorption and related properties, Int J Rock Mech Min Sci Geomech, p 12 (Abstract)

  • Incropera FP, Dewitt DP (1990) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  • Marshall AL (1972) The thermal properties of concrete. Build Sci 7:167–74

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook, Cambridge University Press, London, 329p

    Google Scholar 

  • Özkahraman HT, Selver R, Işık EC (2004) Determination of the thermal conductivity of rock from P-wave velocity. Int J Rock Mech Min Sci 40:703–708

    Google Scholar 

  • Smorodinov MI, Motovilov EA, Volkov VA (1970) Determinations of correlation relationships between strength and some physical characteristics of rocks. In: Proceedings of the 2nd Congress of the International Society of Rock Mechanics, Belgrade, vol 2, pp 35–37

  • Yaşar E, Erdoğan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41:871–875

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Scientific Research Projects Unit of Cukurova University, Adana, Turkey. (Project No: MMF2003BAP13 and MMF 2005BAP6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yaşar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaşar, E., Erdoğan, Y. & Güneyli, H. Determination of the thermal conductivity from physico-mechanical properties. Bull Eng Geol Environ 67, 219–225 (2008). https://doi.org/10.1007/s10064-008-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-008-0126-5

Keywords

Mots clés

Navigation