Skip to main content
Log in

Engineering geology and future stability of the El Risco landslide, NW-Gran Canaria, Spain

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

A 200 m long segment of the only main road in NW-Gran Canaria is built on landslide deposits near the village of El Risco. Structural mapping and analysis of the topography reveal that the N–S striking landslide head scarp is the upper part of a sub-circular failure surface. The southern side of the landslide is delimited by a much older E–W strike-slip fault. Prior to pavement resurfacing in 2006, cracks in the road tarmac at the northern and southern sides of the landslide suggested ongoing creep movement. Slope stability analyses suggest that peak ground acceleration (PGA) was the most likely trigger for the initial failure.

Résumé

La seule route majeure desservant le nord-ouest de Grande Canarie est construite sur les dépôts d’un glissement de terrain sur une longueur de 200 m, près du village d’El Risco. Une cartographie structurale et l’analyse de la topographie ont révélé que l’escarpement de tête, de direction N–S, constitue la partie supérieure d’une surface de rupture sub-circulaire. La partie sud du glissement est délimitée par une faille orientée E–W. Avant l’application d’une nouvelle couche d’asphalte en 2006, des fissures dans la chaussée coïncidaient avec les limites du glissement et auraient pu correspondre à un lent mouvement de fluage en cours. Les analyses de stabilité des pentes indiquent qu’une accélération séismique est la cause la plus probable de la rupture initiale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apuani T, Corazzato C, Cancelli A, Tibaldi A (2005) Physical and mechanical properties of rock masses at Stromboli: a dataset for volcano instability evaluation. Bull Eng Geol Environ 64(4):419–431

    Article  Google Scholar 

  • Bishop AW (1955) The use of slip circles in the stability analysis of slopes. Géotechnique 5:7–17

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Environmental Science Series. American Elsevier, New York, 764 pp

    Google Scholar 

  • Bogaard Pvd, Schmincke H-U (1998) Chronostratigraphy of Gran Canaria. In: Weaver PPE, Schmincke H-U, Firth JV, Duffield W (eds) Proceedings of the ocean drilling program, scientific results 157. Ocean drilling program, College Station, TX, pp 127–140

    Google Scholar 

  • Cabrera MC, Custodio E (2004) Groundwater flow in a volcanic-sedimentary coastal aquifer: Telde area, Gran canaria, Canary Islands, Spain. Hydrogeol. J 12(3):305–320

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (1994) Near-source attenuation of peak horizontal acceleration from worldwide accelerograms recorded from 1957 to 1993. In: Institute EER (ed), 5th US National Conference on Earthquake Engineering, Berkeley, California, pp 283–292

  • Concha-Dimas A (2004) Numerical modelling in understanding catastrophic collapse at Pico de Orizaba, Mexico. PhD Thesis, University of Nevada, Reno

  • Funck T, Schmincke H-U (1998) Growth and destruction of Gran Canaria deduced from seismic reflection and bathymetric data. J Geophys Res 103:15393–15407

    Article  Google Scholar 

  • González de Vallejo LI, Capote R, Cabrera L, Insua JM, Acosta J (2003) Paleoearthquake evidence in Tenerife (Canary Islands) and possible seismotectonic sources. Marine Geophys Res 24(1–2):149–160

    Article  Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam

    Google Scholar 

  • Hürlimann M, Marti J, Ledesma A (2000) Mechanical relationship between catastrophic volcanic landslides and caldera collapses. Geophys Res Lett 27(16):2393–2396

    Article  Google Scholar 

  • Instituto Nacional de Estadística, Poblaciones referidas al 1 de enero de 2006 por Islas y sexo. http://www.ine.es/inebase/cgi/axi?AXIS_PATH=/inebase/temas/t20/e260/a2006/l0/&FILE_AXIS=is01.px&CGI_DEFAULT=/inebase/temas/cgi.opt&COMANDO=SELECCION&CGI_URL=/inebase/cgi/. Retrived 15 Jan 2007

  • Instituto Geográfico Nacional, Ministerio de Fomento, Información sísmica, boletines definitivos de sismos próximos (1993–2004). http://www.fomento.es/MFOM/LANG_CASTELLANO/DIRECCIONES_GENERALES/INSTITUTO_GEOGRAFICO/Geofisica/sismologia/informacionsis/default.htm. Retrieved 15 Jan 2007

  • Janbu N (1957) Earth pressure and bearing capacity by generalized procedure of slices. In: Proceedings of the fourth international conference on soil mechanics, pp 207–212

  • Joyner WB, Boore DM (1993) Methods for regression analysis of strong-motion data. Bull Seismol Soc Am 83(2):469–487

    Google Scholar 

  • Keefer DK (2002) Investigating landslides caused by earthquakes - a historical review. Surv Geophy 23(6):473–510

    Article  Google Scholar 

  • McDougall I, Schmincke H-U (1977) Geochronology of Gran Canaria, Canary Islands: age of shield building volcanism and other magmatic phases. Bull Volcanol 40(1):57–77

    Article  Google Scholar 

  • Mezcua J, Burforn E, Udías A, Rueda J (1992) Seismotectonics of the Canary Islands. Tectonophys 208:447–452

    Article  Google Scholar 

  • Okamoto S (1984) Introduction to earthquake engineering. University of Tokyo Press, pp 629

  • Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2004 Revision and World Urbanization Prospects: The 2003 Revision. http://esa.un.org/unpp. Retrieved 15 Jan 2007

  • Schmincke H-U (1967) Cone sheet swarm, resurgence of Tejeda caldera, and the early geologic history of Gran Canaria. Bull Volcanol 31:153–162

    Article  Google Scholar 

  • Schmincke H-U (1976) The geology of the Canary Islands. In: Kunkel G (eds) Ecology and biogeography in the Canary Islands. The Hague, Netherlands, Junk B V, pp 67–184

    Google Scholar 

  • Spencer E (1967) Method of analysis of the stability of embankments assuming parallel interslices forces. Géotechnique 17(1):11–26

    Google Scholar 

  • Thomas ME, Petford N, Bromhead EN (2004) Volcanic rock-mass properties from Snowdonia and Tenerife: implications for volcano edifice strength. J Geol Soc 161:939–9046

    Article  Google Scholar 

  • Troll V R, Walter T R, Schmincke H-U (2002) Cyclic caldera collapse: piston or piecemeal subsidence? Field and experimental evidence. Geol 30:135–138

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movements types and processes. Landslides Analysis and Control Transportation Research Board. National Academy of Sciences Special Report 176. Chapter 2, pp 11–33

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St-Helens rockslide-avalanche of 18 May 1980. Geotechnique 33(3):243–273

    Article  Google Scholar 

  • Watters RJ, Delahaut WD (1995) Effect of argillic alteration on rock mass stability. In: Haneberg WC, Anderson SA (eds) Clay and shale slope instability. reviews in engineering geology. Geological Society of America, Boulder, CO, pp 139–150

    Google Scholar 

  • Watters RJ, Zimbelman DR, Bowman SD, Crowley JK (2000) Rock mass strength assessment and significance to edifice stability, Mount Rainier and Mount Hood, Cascade Range volcanoes. Pure Appl Geophys 157(6–8):957–976

    Article  Google Scholar 

  • Wesley LD, Leelaratnam V (2001) Shear strength parameters from back-analysis of single slips. Geotech 51(4):373–374

    Article  Google Scholar 

  • Zimbelman DR, Watters RJ, Firth IR, Breit GN, Carrasco-Nunez G (2004) Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico. Bull Volcanol 66(1):66–79

    Article  Google Scholar 

Download references

Acknowledgments

Financial support to M-AL was provided from the Natural Science and Engineering Research Council of Canada and Trinity College Dublin. RdP acknowledges Cartográfica de Canarias S.A. (GRAFCAN) for financial support and for providing very valuable geographical data. We thank Thomas R. Walter for stimulating discussions at the early stages of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Antoine Longpré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longpré, MA., del Potro, R., Troll, V.R. et al. Engineering geology and future stability of the El Risco landslide, NW-Gran Canaria, Spain. Bull Eng Geol Environ 67, 165–172 (2008). https://doi.org/10.1007/s10064-007-0119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-007-0119-9

Keywords

Mots clés

Navigation