Skip to main content
Log in

Variability of the engineering properties of rock masses quantified by the geological strength index: the case of ophiolites with special emphasis on tunnelling

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The paper presents a quantitative description, using the Geological Strength Index (GSI), of the rock masses within an ophiolitic complex including types with large variability due to their range of petrography, tectonic deformation and alteration. This description allows the estimation of the range of rock mass properties and the understanding of the dramatic changes in behaviour which can occur during tunnelling, from stable conditions to severe squeezing within the same formation at the same depth. The paper presents the geological model in which the ophiolitic complexes develop, their various petrographic types and their tectonic deformation, mainly due to overthrusts. The structure of the various rock masses includes all types from massive strong to sheared weak, while the conditions of discontinuities are in most cases fair to poor or very poor due to the fact that they are affected by serpentinisation and shearing. Serpentinisation also affects the initial intact rock itself, reducing its strength. Associated pillow lavas and tectonic mélanges are also characterised. Based on the GSI, a classification of the behaviour in terms of tunnelling is presented, including stable conditions, structural instability, mild overstressing, stress dependant instability, squeezing and ravelling.

Résumé

Une description quantitative des massifs rocheux des complexes ophiolitiques est présentée par le moyen de l’index GSI. Les ophiolites forment un cas particulier à cause de leur variété pétrographique, leur déformation tectonique et leur altération. Cette description permet l’estimation des propriétés géotechniques et la compréhension des différents types de comportements souvent très variables rencontrés lors du creusement de tunnels. L’article discute brièvement le modèle géologique de ces formations, leurs variétés pétrographiques et leur déformation à cause surtout des charriages. La structure des massifs rocheux ophiolitiques inclut tous les types, (du milieu continu au cisaillé), tandis que l’état des joints est toujours faible à cause de la serpentinisation de leurs épontes. La serpentinisation peut aussi affecter la masse entière de la roche saine. Une classification du comportement en tunnel est présentée basée sur l’index GSI: conditions stables, instabilité structurale, instabilité due à des convergences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Barton NR, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–239

    Article  Google Scholar 

  • Bassoullet JP et al. (1984) L’ orogène Himalayen au Crétacé supérieur. Mem Soc Géol Fr 147:9–20

    Google Scholar 

  • Bieniawski ZT (1973) Engineering classification of jointed rock masses. Trans S Afr Inst Civ Eng 15:335–344

    Google Scholar 

  • Debelmas A, Mascle G (1997) Les grandes structures géologiques. Dunod, Paris, 312 pp

    Google Scholar 

  • Foucault A, Rault JF (1995) Dictionnaire de géologie. Masson, Paris

    Google Scholar 

  • Glawe U, Upreti B (2004) Better understanding of the strengths of serpentinite bimrock and homogeneous serpentinite. Felsbau Rock Soil Eng 22(5):53–60

    Google Scholar 

  • Hoek E (1994) Strength of rock and rock masses. News J Int Soc Rock Mech 2(2):4–16

    Google Scholar 

  • Hoek E, Marinos P (2000) Predicting tunnel squeezing problems for weak heterogeneous rock masses. Tunnels and Tunnelling November and December issues pp 45–51 and pp 33–36

  • Hoek E, Marinos P, Benissi M (1998) Applicability of the geological strength index (GSI). Classification for weak and sheared rock masses—The case of the Athens Schist formation. Bull Eng Geol Env 57(2):151–160

    Article  Google Scholar 

  • Hoek E, Marinos P, Marinos V (2005) Characterization and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. Int Rock Mech Min Sci

  • Kaiser PK, Diederichs MS, Martin D, Sharp J, Steiner W (2000) Underground works in hard rock tunnelling and mining. In: Proceedings of the Geo Eng 2000, international conference on geotechnical and geological engineering, Melbourne, Technomic publishers, Lancaster, pp 841–926

  • Koumantakis J (1982) Comportement des peridotites et serpentinites de la Grèce en travaux public. Leur propretés physiques et méchaniques. Bul IAEG 25:53–60

    Google Scholar 

  • Marinos G (1974) Geology of Orthrys and issues on its ophiolites. Ann Géol d Pays Helléniques, 26, University of Athens, pp 118–148

  • Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. In: Proceedings of the GeoEng2000, international conference on geotechnical and geological engineering, Melbourne, Technomic publishers, Lancaster, pp 1422–1446

  • Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Env 60:82–92

    Article  Google Scholar 

  • Marinos V, Marinos P, Hoek E (2005) The geological strength index—applications and limitations. Bull Eng Geol Environ 64:55–65

    Article  Google Scholar 

  • Megard P (1987) Cordilleran Andes and Marginal Andes. In: Monger J, Francheteau J (eds) Geodynamic series, American Geophysical Union, No. 18, pp 71–95

  • Mercier J, Vergely P (1999) Tectonique. Dunod, Paris

    Google Scholar 

  • Pantazis TH (1973) Geology of Troodos mountain, Cyprus. Bull Geogr Assoc C, (3):5–6, 5–155

  • Pe-Piper, Piper D (2002) The igneous rocks of Greece. The anatomy of an orogeny. Gebrueder Borntraeger, Berlin

  • Skemp A, McCaig M (1984) Origins and significance of rocks in an imbricate thrust zone beneath the Pindos ophiolite, northwestern Greece. In: Dixon JE, Robertson HF (eds) geological evolution of eastern mediterranean, Special Publication 17, Geological Society London, pp 569–580

  • Visser W (1980) (ed) Geological nomenclature. Royal Geological and Mining Society of The Netherlands, Bohn, Scheltema and Holkema, Utrecht

Download references

Acknowledgements

We acknowledge the Operational Programme for Educational and Vocational Training (EPEAEK) and particularly the research programme “Pythagoras” for the financial support of this research; this project is co-funded by the European Social Fund (75%) and National Resources (25%). We also acknowledge the opportunities provided by Ergose S.A. and Egnatia Odos S.A. to work on ophiolitic complexes. The assistance of Professor E. Mposkos for the petrographic characterisation of samples of ophiolites is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinos, P., Hoek, E. & Marinos, V. Variability of the engineering properties of rock masses quantified by the geological strength index: the case of ophiolites with special emphasis on tunnelling. Bull Eng Geol Environ 65, 129–142 (2006). https://doi.org/10.1007/s10064-005-0018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-005-0018-x

Keywords

Mots clés

Navigation