Skip to main content
Log in

Inhibition of endoplasmic reticulum associated degradation reduces endoplasmic reticulum stress and alters lysosomal morphology and distribution

  • Research Article
  • Published:
Molecules and Cells

Abstract

Disturbances in proteostasis are observed in many neurodegenerative diseases. This leads to activation of protein quality control to restore proteostasis, with a key role for the removal of aberrant proteins by proteolysis. The unfolded protein response (UPR) is a protein quality control mechanism of the endoplasmic reticulum (ER) that is activated in several neurodegenerative diseases. Recently we showed that the major proteolytic pathway during UPR activation is via the autophagy/lysosomal system. Here we investigate UPR induction if the other major proteolytic pathway of the ER -ER associated degradation (ERAD)-is inhibited. Surprisingly, impairment of ERAD results in decreased UPR activation and protects against ER stress toxicity. Autophagy induction is not affected under these conditions, however, a striking relocalization of the lysosomes is observed. Our data suggest that a protective UPR-modulating mechanism is activated if ERAD is inhibited, which involves lysosomes. Our data provide insight in the cross-talk between proteolytic pathways involved in ER proteostasis. This has implications for neurodegenerative diseases like Alzheimer’s disease where disturbed ER proteostasis and proteolytic impairment are early phenomena in the pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avezov, E., Frenkel, Z., Ehrlich, M., Herscovics, A., and Lederkremer, G.Z. (2008). Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation. Mol. Biol. Cell 19, 216–225.

    Article  PubMed  CAS  Google Scholar 

  • Balch, W.E., Morimoto, R.I., Dillin, A., and Kelly, J.W. (2008). Adapting proteostasis for disease intervention. Science 319, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Bernales, S., McDonald, K.L., and Walter, P. (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423.

    Article  PubMed  Google Scholar 

  • Bernales, S., Schuck, S., and Walter, P. (2007). ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285–287.

    PubMed  Google Scholar 

  • Cali, T., Galli, C., Olivari, S., and Molinari, M. (2008). Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem. Biophys. Res. Commun. 371, 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Ding, W.X., Ni, H.M., Gao, W., Hou, Y.F., Melan, M.A., Chen, X., Stolz, D.B., Shao, Z.M., and Yin, X.M. (2007). Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702–4710.

    Article  PubMed  CAS  Google Scholar 

  • Elfrink, H.L., Zwart, R., Cavanillas, M.L., Schindler, A.J., Baas, F., and Scheper, W. (2012). Rab6 is a modulator of the unfolded protein response: implications for Alzheimer’s disease. J. Alzheimers Dis. 28, 917–929.

    PubMed  CAS  Google Scholar 

  • Fagioli, C., and Sitia, R. (2001). Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J. Biol. Chem. 276, 12885–12892.

    Article  PubMed  CAS  Google Scholar 

  • Haberman, A., Williamson, W.R., Epstein, D., Wang, D., Rina, S., Meinertzhagen, I.A., and Hiesinger, P.R. (2012). The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. J. Cell Biol. 196, 261–276.

    Article  PubMed  CAS  Google Scholar 

  • Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response regulates amino acid metabolism and resis-tance to oxidative stress. Mol. Cell 11, 619–633.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, D.N., Garman, S.C., and Molinari, M. (2005). The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Hetz, C., Thielen, P., Matus, S., Nassif, M., Court, F., Kiffin, R., Martinez, G., Cuervo, A.M., Brown, R.H., and Glimcher, L.H. (2009). XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306.

    Article  PubMed  CAS  Google Scholar 

  • Hoozemans, J.J., Veerhuis, R., Rozemuller, A.J., Baas, F., Eikelenboom, P., and Scheper, W. (2005). The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. (Berl) 110, 165–172.

    Article  CAS  Google Scholar 

  • Hoozemans, J.J.M., Van Haastert, E.S., Nijholt, D.A.T., Rozemuller, A.J.M., Eikelenboom, P., and Scheper, W. (2009). The Unfolded Protein Response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am. J. Pathol. 174, 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa, N., Tremblay, L.O., You, Z., Herscovics, A., Wada, I., and Nagata, K. (2003). Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J. Biol. Chem. 278, 26287–26294.

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa, N., Hara, Y., and Mizushima, N. (2006). Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 580, 2623–2629.

    Article  PubMed  CAS  Google Scholar 

  • Kanuka, H., Kuranaga, E., Hiratou, T., Igaki, T., Nelson, B., Okano, H., and Miura, M. (2003). Cytosol-endoplasmic reticulum interplay by Sec61alpha translocon in polyglutamine-mediated neurotoxicity in Drosophila. Proc. Natl. Acad. Sci. USA 100, 11723–11728.

    Article  PubMed  CAS  Google Scholar 

  • Kanuka, H., Hiratou, T., Igaki, T., Kanda, H., Kuranaga, E., Sawamoto, K., Aigaki, T., Okano, H., and Miura, M. (2005). Gain-offunction screen identifies a role of the Sec61alpha translocon in Drosophila postmitotic neurotoxicity. Biochim. Biophys. Acta 1726, 225–237.

    Article  PubMed  CAS  Google Scholar 

  • Korolchuk, V.I., Saiki, S., Lichtenberg, M., Siddiqi, F.H., Roberts, E.A., Imarisio, S., Jahreiss, L., Sarkar, S., Futter, M., Menzies, F.M., et al. (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460.

    Article  PubMed  CAS  Google Scholar 

  • Miura, H., Hashida, K., Sudo, H., Awa, Y., Takarada-Iemata, M., Kokame, K., Takahashi, T., Matsumoto, M., Kitao, Y., and Hori, O. (2010). Deletion of Herp facilitates degradation of cytosolic proteins. Genes Cells 15, 843–853.

    PubMed  CAS  Google Scholar 

  • Molinari, M., Calanca, V., Galli, C., Lucca, P., and Paganetti, P. (2003). Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299, 1397–1400.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsukasa, K., and Brodsky, J.L. (2008). The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9, 861–870.

    Article  PubMed  CAS  Google Scholar 

  • Nijholt, D.A., de Graaf, T.R., Van Haastert, E.S., Oliveira, A.O., Berkers, C.R., Zwart, R., Ovaa, H., Baas, F., Hoozemans, J.J., and Scheper, W. (2011a). Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer’s disease. Cell Death Differ. 18, 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  • Nijholt, D.A., De, K.L., Elfrink, H.L., Hoozemans, J.J., and Scheper, W. (2011b). Removing protein aggregates: the role of proteolysis in neurodegeneration. Curr. Med. Chem. 18, 2459–2476.

    Article  PubMed  CAS  Google Scholar 

  • Nijholt, D.A., Van Haastert, E.S., Rozemuller, A.J., Scheper, W., and Hoozemans, J.J. (2012). The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J. Pathol. 226, 693–702.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, R.A., and Yang, D.S. (2011). Autophagy failure in Alzheimer’s disease-locating the primary defect. Neurobiol. Dis. 43, 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231.

    Article  PubMed  CAS  Google Scholar 

  • Rafiq, M.A., Kuss, A.W., Puettmann, L., Noor, A., Ramiah, A., Ali, G., Hu, H., Kerio, N.A., Xiang, Y., Garshasbi, M., et al. (2011). Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 89, 176–182.

    Article  PubMed  CAS  Google Scholar 

  • Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Ron, E., Shenkman, M., Groisman, B., Izenshtein, Y., Leitman, J., and Lederkremer, G.Z. (2011). Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1. Mol. Biol. Cell 22, 3945–3954.

    Article  PubMed  CAS  Google Scholar 

  • Scheper, W., and Hoozemans, J.J. (2009). Endoplasmic reticulum protein quality control in neurodegenerative disease: the good, the bad and the therapy. Curr. Med. Chem. 16, 615–626.

    Article  PubMed  CAS  Google Scholar 

  • Scheper, W., Nijholt, D.A., and Hoozemans, J.J. (2011). The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7, 910–911.

    Article  PubMed  Google Scholar 

  • Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880–885.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, R.E., Pearce, M.M., Shaler, T.A., Olzmann, J.A., Greenblatt, E.J., and Kopito, R.R. (2012). Unassembled CD147 is an endogenous endoplasmic reticulum-associated degradation substrate. Mol. Biol. Cell 23, 4668–4678.

    Article  PubMed  CAS  Google Scholar 

  • Vembar, S.S., and Brodsky, J.L. (2008). One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F., Song, W., Brancati, G., and Segatori, L. (2011). Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases. J. Biol. Chem. 286, 43454–43464.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiep Scheper.

About this article

Cite this article

Elfrink, H.L., Zwart, R., Baas, F. et al. Inhibition of endoplasmic reticulum associated degradation reduces endoplasmic reticulum stress and alters lysosomal morphology and distribution. Mol Cells 35, 291–297 (2013). https://doi.org/10.1007/s10059-013-2286-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2286-9

Keywords

Navigation