Skip to main content
Log in

Differential anoxic expression of sugar-regulated genes reveals diverse interactions between sugar and anaerobic signaling systems in rice

  • Research Article
  • Published:
Molecules and Cells

Abstract

The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler. Examination of sugar regulation of those genes under anaerobic conditions revealed the presence of multiple paths underlying anaerobic induction of gene expression in rice, subgrouped into three distinct types. The first of these, which was found in type-1 genes, involved neither sugar regulation nor additional anaerobic induction under anoxia, indicating that anoxic induction is a simple result from the release of sugar repression by O2-deficient conditions. In contrast, type-2 genes also showed no sugar regulation, albeit with enhanced expression under anoxia. Lastly, expression of type-3 genes is highly enhanced with sugar regulation sustained under anoxia. Intriguingly, the inhibition of the mitochondrial ATP synthesis can reproduce expression pattern of a specific set of anaerobically induced genes, implying that rice cells may sense O2 deprivation, partly via perception of the perturbed cellular energy status. Our study of interaction between sugar signaling and anaerobic conditions has revealed that sugar signaling and the cellular energy status are likely to communicate with each other and influence anaerobic induction of gene expression in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baena-Gonzalez, E. (2010). Energy signaling in the regulation of gene expression during stress. Mol. Plant 3, 300–313.

    Article  PubMed  CAS  Google Scholar 

  • Baena-Gonzalez, E., and Sheen, J. (2008). Convergent energy and stress signaling. Trends Plant Sci. 13, 474–482.

    Article  PubMed  CAS  Google Scholar 

  • Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signaling. Nature 448, 938–942.

    Article  PubMed  CAS  Google Scholar 

  • Cho, J.I., Ryoo, N., Eom, J.S., Lee, D.W., Kim, H.B., Jeong, S.W., Lee, Y.H., Kwon, Y.K., Cho, M.H., Bhoo, S.H., et al. (2009a). Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol. 149, 745–759.

    Article  PubMed  CAS  Google Scholar 

  • Cho, J.I., Ryoo, N., Hahn, T.R., and Jeon, J.S. (2009b). Evidence for a role of hexokinases as conserved glucose sensors in both monocot and dicot plant species. Plant Signal. Behav. 4, 908–910.

    Article  PubMed  CAS  Google Scholar 

  • Beevers, H. (1961). Respiratory metabolism in plants (New York: Row-Peterson and Company).

    Google Scholar 

  • Fennoy, S.L., Jayachandran, S., and Bailey-Serres, J. (1997). RNase activities are reduced concomitantly with conservation of total cellular RNA and ribosomes in O2-deprived seedling roots of maize. Plant Physiol. 115, 1109–1117.

    PubMed  CAS  Google Scholar 

  • Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., et al. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Green, P.J. (1993). Control of mRNA stability in higher plants. Plant Physiol. 102, 1065–1070.

    PubMed  CAS  Google Scholar 

  • Greenway, H., and Gibbs, J. (2003). Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 999–1036.

    Article  CAS  Google Scholar 

  • Hanson, J., and Smeekens, S. (2009). Sugar perception and signaling—an update. Curr. Opin. Plant Biol. 12, 562–567.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785.

    Article  PubMed  CAS  Google Scholar 

  • Hedbacker, K., and Carlson, M. (2008). SNF1/AMPK pathways in yeast. Front. Biosci. 13, 2408–2420.

    Article  PubMed  CAS  Google Scholar 

  • Ho, S.L., Chao, Y.C., Tong, W.W., and Yu, S.M. (2001). Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control cechanisms. Plant Physiol. 125, 877–890.

    Article  PubMed  CAS  Google Scholar 

  • Hoeren, F.U., Dolferus, R., Wu, Y., Peacock, W.J., and Dennis, E.S. (1998). Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149, 479–490.

    PubMed  CAS  Google Scholar 

  • Huang, N., Chandler, J., Thomas, B.R., Koizumi, N., and Rodriguez, R.L. (1993). Metabolic regulation of alpha-amylase gene expression in transgenic cell cultures of rice (Oryza sativa L.). Plant Mol. Biol. 23, 737–747.

    Article  PubMed  CAS  Google Scholar 

  • Jang, J.C., Leon, P., Zhou, L., and Sheen, J. (1997). Hexokinase as a sugar sensor in higher plants. Plant Cell 9, 5–19.

    PubMed  CAS  Google Scholar 

  • Koch, K., Ying, Z., Wu, Y., and Avigne, W. (2000). Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J. Exp. Bot. 51, 417–427.

    Article  PubMed  CAS  Google Scholar 

  • Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., Beretta, O., Vitulli, F., Alpi, A., and Perata, P. (2007). Transcript profiling of the anoxic rice coleoptile. Plant Physiol. 144, 218–231.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.W., Chen, P.W., Lu, C.A., Chen, S., Ho, T.H., and Yu, S.M. (2009). Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci. Signal. 2, ra61.

    Article  PubMed  Google Scholar 

  • Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A., Perata, P., and van Dongen, J.T. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Van Toai, T., Moy, L.P., Bock, G., Linford, L.D., and Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Cell 137, 1115–1129.

    CAS  Google Scholar 

  • Loughman, B.C., Ratcliffe, R.G., and Southon, T.E. (1989). Observations on the cytoplasmic and vacuolar orthophosphate pools in leaf tissues using in vivo 31P-NMR spectroscopy. FEBS Lett. 242, 279–284.

    Article  CAS  Google Scholar 

  • Lu, C.A., Lin, C.C., Lee, K.W., Chen, J.L., Huang, L.F., Ho, S.L., Liu, H.J., Hsing, Y.I., and Yu, S.M. (2007). The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19, 2484–2499.

    Article  PubMed  CAS  Google Scholar 

  • McGee, S.L., and Hargreaves, M. (2008). AMPK and transcriptional regulation. Front. Biosci. 13, 3022–3033.

    Article  PubMed  CAS  Google Scholar 

  • Mohanty, B., Herath, V., Wijaya, E., Yeo, H.C., de Los Reyes, B.G., and Lee, D.Y. (2012). Patterns of cis-element enrichment reveal potential regulatory modules involved in the transcriptional regulation of anoxia response of japonica rice. Gene 511, 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Mustroph, A., Boamfa, E.I., Laarhoven, L.J., Harren, F.J., Albrecht, G., and Grimm, B. (2006). Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: Dark ethanol production is dominated by the shoots. Planta 225, 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Olive, M.R., Peacock, W.J., and Dennis, E.S. (1991). The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adh1 promoter. Nucleic Acids Res. 19, 7053–7060.

    Article  PubMed  CAS  Google Scholar 

  • Park, M., Yim, H.K., Park, H.G., Lim, J., Kim, S.H., and Hwang, Y.S. (2010). Interference with oxidative phosphorylation enhances anoxic expression of rice alpha-amylase genes through abolishing sugar regulation. J. Exp. Bot. 61, 3235–3244.

    Article  PubMed  CAS  Google Scholar 

  • Price, J., Laxmi, A., St. Martin, S.K., and Jang, J.C. (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16, 2128–2150.

    Article  PubMed  CAS  Google Scholar 

  • Ramon, M., Rolland, F., and Sheen, J. (2008). Sugar sensing and signaling. The Arabidopsis book/American Society of Plant Biologists 6, e0117.

    PubMed  Google Scholar 

  • Raymond, P., Al-Ani, A., and Pradet, A. (1985). ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds. Plant Physiol. 79, 879–884.

    Article  PubMed  CAS  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann. Rev. Plant Biol. 57, 675–709.

    Article  CAS  Google Scholar 

  • Salas, J., Salas, M., Vinuela, E., and Sols, A. (1965). Gucokinase of rabbit liver. J. Biol. Chem. 240, 1014–1018.

    PubMed  CAS  Google Scholar 

  • Sasidharan, R., and Mustroph, A. (2011). Plant oxygen sensing is mediated by the N-end rule pathway: a milestone in plant anaerobiosis. Plant Cell 23, 4173–4183.

    Article  PubMed  CAS  Google Scholar 

  • Sheen, J. (2010). Discover and connect cellular signaling. Plant Physiol. 154, 562–566.

    Article  PubMed  CAS  Google Scholar 

  • Sheu-Hwa, C.S., Lewis, D.H., and Waker, D.A. (1975). Stimulation of photosynthetic starch formation by sequestration of cytoplasmic orthophosphate. New Phytol. 74, 383–392.

    Article  CAS  Google Scholar 

  • Thompson, J., Abdullah, R., and Cocking, E. (1986). Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Sci. 47, 123–133.

    Article  Google Scholar 

  • Wang, H.J., Wan, A.R., Hsu, C.M., Lee, K.W., Yu, S.M., and Jauh, K.W. (2007). Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol. Biol. 63, 441–463.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. (1975). Plant nucleases. Annu. Rev. Plant Biol. 26, 187–208.

    Article  CAS  Google Scholar 

  • Yim, H.K., Lim, M.N., Lee, S.E., Lim, J., Lee, Y., and Hwang, Y.S. (2012). Hexokinase-mediated sugar signaling controls expression of the calcineurin B-like interacting protein kinase 15 gene and is perturbed by oxidative phosphorylation inhibition. J. Plant Physiol. 169, 1551–1558.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-sic Hwang.

About this article

Cite this article

Lim, Mn., Lee, Se., Yim, Hk. et al. Differential anoxic expression of sugar-regulated genes reveals diverse interactions between sugar and anaerobic signaling systems in rice. Mol Cells 36, 169–176 (2013). https://doi.org/10.1007/s10059-013-0152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0152-4

Keywords

Navigation