Skip to main content
Log in

Magnetic nanoparticles for multi-imaging and drug delivery

  • Minireview
  • Published:
Molecules and Cells

Abstract

Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alivisatos, A.P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–3239.

    Article  CAS  Google Scholar 

  • Apple, F.S. (2011). Biomarkers in aggregate. Nat. Biotechnol. 29, 236–237.

    Article  PubMed  CAS  Google Scholar 

  • Arbab, A.S., Liu, W., and Frank, J.A. (2006). Cellular magnetic resonance imaging: current status and future prospects. Expert Rev. Med. Devices 3, 427–439.

    Article  PubMed  CAS  Google Scholar 

  • Bedja, I., Hotchandani, S., and Kamat, P.V. (1994). Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(ii) complex. J. Phys. Chem. 98, 4133–4140.

    Article  CAS  Google Scholar 

  • Bigioni, TP., Lin, XM., Nguyen, TT., Corwin, EI., Witten, TA., and Jaeger, H.M. (2006). Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5, 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Bonitatibus, P.J. Jr., Torres, A.S., Goddard, G.D., FitzGerald, P.F., and Kulkarni, A.M. (2010). Synthesis, characterization, and computed tomography imaging of a tantalum oxide nanoparticle imaging agent. Chem. Commun. 46, 8956–8958.

    Article  CAS  Google Scholar 

  • Cheon, J., and Lee, J.H. (2008). Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 41, 1630–1640.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.S., Choi, H.J., Jung, D.C., Lee, J.H., and Cheon, J. (2008a). Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid beta self-assembly. Chem. Commun. 2197–2199.

    Google Scholar 

  • Choi, J.S., Park, J.C., Nah, H., Woo, S., Oh, J., Kim, K.M., Cheon, G.J., Chang, Y., Yoo, J., and Cheon, J. (2008b). A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 47, 6259–6262.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.Y., Lee, S.H., Na, H.B., An, K., Hyeon, T., and Seo, T.S. (2010a). In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst. Eng. 33, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.S., Lee, J.H., Shin, T.H., Song, H.T., Kim, E.Y., and Cheon, J. (2010b). Self-confirming “AND” logic nanoparticles for faultfree MRI. J. Am. Chem. Soc. 132, 11015–11017.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C., and Hughes, A.F.W. (1950). The physical properties of cytoplasm — a study by means of the magnetic particle method.1. experimental. Exp. Cell Res. 1, 37–80.

    Article  Google Scholar 

  • Cullity, B.D. (1972). Introduction to Magnetic Materials (Addison-Wesley Publishing: Reading).

    Google Scholar 

  • Dabbousi, B., RodriguezViejo, J., Mikulec, F., Heine, J., Mattoussi, H., Ober, R., Jensen, K., and Bawendi, M.G. (1997). (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475.

    Article  CAS  Google Scholar 

  • Derfus, A.M., von Maltzahn, G., Harris, T.J., Duza, T., Vecchio, K.S., Ruoslahti, E., and Bhatia, S.N. (2007). Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936

    Article  CAS  Google Scholar 

  • Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60.

    Article  CAS  Google Scholar 

  • Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Fortin, J.P., Wilhelm, C., Servais, J., Menager, C., Bacri, J.C., and Gazeau, F. (2007). Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635.

    Article  PubMed  CAS  Google Scholar 

  • Ghadiali, J.E., and Stevens, M.M. (2008). Enzyme-responsive nanoparticle systems. Adv. Mater. 20, 4359–4363.

    Article  CAS  Google Scholar 

  • Giri, S., Trewyn, B.G., Stellmaker, M.P., and Lin, V.S.-Y. (2005). Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. Engl. 44, 5038–5044.

    Article  PubMed  CAS  Google Scholar 

  • Glogauer, M., Ferrier, J.C., and McCulloch, A. (1995). Magneticfields applied to collagen-coated ferric-oxide beads induce stretch-activated ca2+ flux in fibroblasts. Am. J. Physiol. Cell Physiol. 269, 1093–1104.

    Google Scholar 

  • Gupta, A.K., and Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021.

    Article  PubMed  CAS  Google Scholar 

  • Harmon, B.V., Corder, A.M., Collins, R.J., Gob, G.C., Allen, J., Allan, D.J., and Kerr, J.F. (1990). Cell-death induced in a murine mastocytoma by 42–47-degrees-c heating in vitro — evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int. J. Radiat. Biol. 58, 845–858.

    Article  PubMed  CAS  Google Scholar 

  • Harris, T.J., von Maltzahn, G., Derfus, A.M., Ruoslahti, E., and Bhatia, S.N. (2006). Proteolytic actuation of nanoparticle selfassembly. Angew. Chem. Int. Ed. Engl. 45, 3161–3165.

    Article  PubMed  CAS  Google Scholar 

  • Henze, M., Schuhmacher, J., Hipp, P., Kowalski, J., Becker, D.W., Doll, J., Mäcke, H.R., Hofmann, M., Debus, J., and Haberkorn, U.J. (2001). PPET imaging of somatostatin receptors using [(68)GA] DOTA-D-Phe(1)-Tyr(3)-octreotide: First results in patients with meningiomas. J. Nucl. Med. 42, 1053–1056.

    PubMed  CAS  Google Scholar 

  • Hergt, R., Andra, W., d’Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., and Schmidt, H.G. (1998). Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754.

    Article  CAS  Google Scholar 

  • Hergt, R., Dutz, S., Muller, R., and Zeisberger, M. (2006). Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter. 18, 2919–2934.

    Article  Google Scholar 

  • Hong, R., Fischer, N.O., Emrick, T., and Rotello, V.M. (2005). Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 17, 4617–4621.

    Article  CAS  Google Scholar 

  • Hyeon, T. (2003). Chemical synthesis of magnetic nanoparticles. Chem. Commun. 927–934.

    Google Scholar 

  • Jana, N.R., Chen, Y., and Peng, X. (2004). Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 16, 3931–3935.

    Article  CAS  Google Scholar 

  • Judenhofer, M.S., Wehrl, H.F., Newport, D.F., Catana, C., Siegel, S.B., Becker, M., Thielscher, A., Kneilling, M., Lichy, M.P., Eichner, M., et al. (2008). Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465.

    Article  PubMed  CAS  Google Scholar 

  • Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S., et al. (2005). Nanoscale size effect of nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging (MRI). J. Am. Chem. Soc. 127, 5732–5733.

    Article  PubMed  CAS  Google Scholar 

  • Jun, Y.W., Choi, J., and Cheon, J. (2007). Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem. Commun. 1203–1214.

    Google Scholar 

  • Jun, Y.W., Seo, J.W., and Cheon, J. (2008a). Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41, 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Jun, Y.W., Lee, J.H., and Cheon, J. (2008b). Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 47, 5122–5135.

    Article  PubMed  CAS  Google Scholar 

  • Jung, C.W., and Jacobs, P. (1995). Physical and chemical-properties of superparamagnetic iron-oxide MR contrast agents — ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661–674.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677.

    Article  CAS  Google Scholar 

  • Kim, J., Piao, Y., and Hyeon, T. (2009). Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390.

    Article  PubMed  CAS  Google Scholar 

  • Kubaska, S., Sahani, D.V., Saini, S., Hahn, P.F., and Halpern, E. (2001). Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization. Clin. Radiol. 56, 410–415.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C.Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., and Lin, V.S. (2003). A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–4459.

    Article  PubMed  CAS  Google Scholar 

  • Latham, A.H., and Williams, M.E. (2006). Versatile routes toward functional, water-soluble nanoparticles via trifluoroethylester-PEG-thiol ligands. Langmuir 22, 4319–4326.

    Article  PubMed  CAS  Google Scholar 

  • Latham, A.H., and Williams, M.E. (2008). Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res. 41, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Lauffer, R.E. (1987). Paramagnetic metal-complexes as water proton relaxation agents for nmr imaging — theory and design. Chem. Rev. 87, 901–927.

    Article  CAS  Google Scholar 

  • Lee, J.H., Jun, Y.W., Yeon, S.I., Shin, J.S., and Cheon, J. (2006). Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed. Engl. 118, 8340–8342.

    Article  Google Scholar 

  • Lee, J.H., Huh, Y.M., Jun, Y.W., Seo, J.W., Jang, J.T., Song, H.T., Kim, S., Cho, E.J., Yoon, H.G., Suh, J.S., et al. (2007). Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Lee, K., Moon, S.H., Lee, Y., Park, T.G., and Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl. 121, 4238–4243.

    Article  Google Scholar 

  • Lee, J.E., Lee, N., Kim, H., Kim, J., Choi, S.H., Kim, J.H., Kim, T., Song, I.C., Park, S.P., Moon, W.K., et al. (2010). Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc. 132, 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Jang, J.T., Choi, J.S., Moon, S.H., Noh, S.H., Kim, J.W., Kim, J.G., Kim, I.S., Park, K.I., and Cheon, J. (2011). Exchangecoupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422.

    Article  PubMed  CAS  Google Scholar 

  • Lee, N., Cho, H.R., Oh, M.H., Lee, S.H., Kim, K., Kim, B.H., Shin, K., Ahn, T.Y., Choi, J.W., Kim, Y.W., et al. (2012). Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J. Am. Chem. Soc. 134, 10309–10312.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T., and Weissleder, R. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414.

    Article  PubMed  CAS  Google Scholar 

  • Ling, Y., Pong, T., Vassiliou, C.C., Huang, P.L., and Cima, M.J. (2011). Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers. Nat. Biotechnol. 29, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Link, S., and El-Sayed, M.A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B. 103, 8410–8426.

    Article  CAS  Google Scholar 

  • Liu, T.Y., Hu, S.H., Liu, D.M., Chen, S.Y., and Chen, I.W. (2009). Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4, 52–65.

    Article  CAS  Google Scholar 

  • Maccioni, F., Bruni, A., Viscido, A., Colaiacomo, M.C., Cocco, A., Montesani, C., Caprilli, R., and Marini, M. (2006). MR imaging in patents with Crohn disease: Value of T2-versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology 238, 517–530.

    Article  PubMed  Google Scholar 

  • Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., and Jordan, A. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic ironoxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324.

    Article  PubMed  Google Scholar 

  • Massoud, T.F., and Gambhir, S.S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580.

    Article  PubMed  CAS  Google Scholar 

  • Medarova, Z., Pham, W., Farrar, C., Petkova, V., and Moore, A. (2007). In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13, 372–377.

    Article  PubMed  CAS  Google Scholar 

  • Molday, R.S. (1984). US patent 4, 452, 773.

  • Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S.H., and Fullerton, E.E. (2002). Magnetic recording: advancing into the future. J. Phys. D Appl. Phys. 35, 157–167.

    Article  Google Scholar 

  • Murray, C.B., Sun, S.H., Doyle, H., and Betley, T. (2001). Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bull. 26, 985–991.

    Article  CAS  Google Scholar 

  • Na, H.B., Song, I.C., and Hyeon, T. (2009). Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148.

    Article  CAS  Google Scholar 

  • Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., and von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496.

    Article  CAS  Google Scholar 

  • Noh, S.H., Na, W., Jang, J.T., Lee, J.H., Lee, E.J., Moon, S.H., Lim, Y., Shin, J.S., and Cheon, J. (2012). Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12, 3716–3721.

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos, V., Yodh, A.G., Schnall, M., and Chance, B. (2000). Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97, 2767–2722.

    Article  PubMed  CAS  Google Scholar 

  • Oh, M.H., Lee, N., Kim, H., Park, S.P., Piao, Y., Lee, J., Jun, S.W., Moon, W.K., Choi, S.H., and Hyeon, T. (2011). Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J. Am. Chem. Soc. 133, 5508–5515.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, K.L., Fairbairn, D.W., Smith, M.J., and Poe, B.S. (1998). Critical parameters influencing hyperthermia-induced apoptosis in human lymphoid cell lines. Apoptosis 3, 369–375.

    Article  PubMed  Google Scholar 

  • Ow, H., Larson, D.R., Srivastava, M., Baird, B.A., Webb, W.W., and Wiesner, U. (2005). Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 5, 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, 167–181.

    Article  Google Scholar 

  • Pannaparayil, T., and Komarneni, S. (1989). Synthesis and characterization of ultrafine cobalt ferrites. IEEE Trans. Magn. 25, 4233–4235.

    Article  CAS  Google Scholar 

  • Peer, D., Karp, J.M., Hong, S., FaroKHzad, O.C., Margalit, R., and Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotech. 2, 751–760.

    Article  CAS  Google Scholar 

  • Peng, S., Wang, C., Xie, J., and Sun, S. (2006). Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc. 128, 10676–10677.

    Article  PubMed  CAS  Google Scholar 

  • Perez, J.M., O’Loughin, T., Simeone, F.J., Weissleder, R., and Josephson, L. (2002a). DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124, 2856–2857.

    Article  PubMed  CAS  Google Scholar 

  • Perez, J.M., Josephson, L., O’Loughlin, T., Högemann, D., and Weissleder, R. (2002b). Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820.

    PubMed  CAS  Google Scholar 

  • Prodan, E., Radloff, C., Halas, N.J., and Nordlander, P. (2003). A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422.

    Article  PubMed  CAS  Google Scholar 

  • Reimer, P., and Balzer, T. (2003). Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrastenhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276.

    PubMed  Google Scholar 

  • Reimer, P., Rummeny, E.J., Daldrup, H.E., Balzer, T., Tombach, B., Berns, T., and Peters, P.E. (1995). Clinical-result with resovist — A phase-2 clinical-trail. Radiology 195, 489–496.

    PubMed  CAS  Google Scholar 

  • Rodriguez, O., Fricke, S., Chien, C., Dettin, L., VanMeter, J., Shapiro, E., Dai, H.N., Casimiro, M., Ileva, L., Dagata, J., et al. (2006). Contrast-enhanced in vivo imaging of breast and prostate cancer cells by MRI. Cell Cycle 5, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Sarikaya, M., Tamerler, C., Jen, A., Schulten, K., and Baneyx, F. (2003). Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A.M., and Nie, S. (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S.H. (2006). Recent advances in chemical synthesis, selfassembly, and applications of FePt nanoparticles. Adv. Mater. 18, 393–403.

    Article  CAS  Google Scholar 

  • Sun, S.H., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., and Li, G.X. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C.R., Ferris, D.P., Lee, J.H., Choi, E., Cho, M.H., Kim, E.S., Stoddart, J.F., Shin, J.S., Cheon, J., and Zink, J.I. (2010). Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J. Am. Chem. Soc. 132, 10623–10625.

    Article  PubMed  CAS  Google Scholar 

  • Tong, S., Hou, S., Zheng, Z., Zhou, J., and Bao, G. (2010). Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 10, 4607–4613.

    Article  PubMed  CAS  Google Scholar 

  • Valberg, P.A., and Feldman, H.A. (1987). Magnetic particle motions within living cells — physical theory and techniques. Biophys. J. 52, 551–569.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. (2005). Nanomaterial-based amplified transduction of biomolecular interactions. Small 1, 1036–1043.

    Article  PubMed  CAS  Google Scholar 

  • Wang, N., Butler, J.P., and Ingber, D.E. (1993). Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260, 1124–1127.

    Article  PubMed  CAS  Google Scholar 

  • Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., Chiocca, E.A., and Basilion, J.P. (2000). In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Wust, P., Hildebrandt, B., and Sreenivasa, G. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Yi, D.K., Lee, S.S., Papaefthymiou, G.C., and Ying, J.Y. (2006). Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 18, 614–619.

    Article  CAS  Google Scholar 

  • Yoo, D., Lee, J.H., Shin, T.H., and Cheon, J. (2011). Theranostic magnetic nanoparticles. Acc. Chem. Res. 44, 863–874.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, D., Jeong, H., Preihs, C., Choi, J.S., Shin, T.H., Sessler, J.L., and Cheon, J. (2012). Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew. Chem. Int. Ed. Engl. 51, 12482–12485.

    Article  PubMed  CAS  Google Scholar 

  • Yu, M.K., Jeong, Y.Y., Park, J., Park, S., Kim, J.W., Min, J.J., Kim, K., and Jon, S. (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. Engl. 47, 5362–5365.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Kohler, N., and Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23, 1553–1561.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwoo Cheon.

About this article

Cite this article

Lee, JH., Kim, Jw. & Cheon, J. Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells 35, 274–284 (2013). https://doi.org/10.1007/s10059-013-0103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0103-0

Keywords

Navigation