Skip to main content
Log in

Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1α/β-catenin-dependent pathway

  • Research Article
  • Published:
Molecules and Cells

Abstract

Although cancer stem cells (CSCs) play a crucial role in seeding the initiation of tumor progression, they do not always possess the same potent ability as tumor metastasis. Thus, precisely how migrating CSCs occur, still remains unclear. In the present study, we first comparatively analyzed a series of prostate CSCs, which exhibited a dynamically increasing and disseminating ability in nude mice. We observed that the transcriptional activity of HIF-1α and β-catenin became gradually elevated in these stem cells and their epithelial-mesenchymal transition (EMT) characteristic altered from an epithelial type to a mesenchymal type. Next, we further used cancer-associated fibroblasts (CAFs), which were cultured from surgically resected tissues of prostate cancer (PCa) to stimulate prostate CSCs. Similar results were reconfirmed and showed that the protein levels of both HIF-1α and β-catenin were markedly improved. In addition, the EMT phenotype displayed a homogenous mesenchymal type, accompanied with increased aggressive potency in vitro. Most importantly, the aforementioned promoting effect of CAFs on prostate CSCs was completely repressed after “silencing” the activity of β-catenin by transfection of stem cells with ShRNA. Taken together, our observations suggest that prostate migrating CSCs, with a mesenchymal phenotype, could be triggered by CAFs in a HIF-1α/β-catenin-dependent signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., and Kirchner, T. (2005). Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5, 744–749.

    Article  PubMed  CAS  Google Scholar 

  • Cat, B., Stuhlmann, D., Steinbrenner, H., Alili, L., Holtkötter, O., Sies, H., and Brenneisen, P. (2006). Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J. Cell Sci. 119, 2727–2738.

    Article  PubMed  CAS  Google Scholar 

  • Chung, L.W., Baseman, A., Assikis, V., and Zhau, H.E. (2005). Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J. Urol. 173, 10–20.

    Article  PubMed  Google Scholar 

  • Conley, S.J., Gheordunescu, E., Kakarala, P., Newman, B., Korkaya, H., Heath, A.N., Clouthier, S.G., and Wicha, M.S. (2012). Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl. Acad. Sci. USA 109, 2784–2789.

    Article  PubMed  CAS  Google Scholar 

  • De Wever, O., and Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. J. Pathol. 200, 429–447.

    Article  PubMed  Google Scholar 

  • Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the’ seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., and Chiarugi, P. (2010). Reciprocal activation of prostate cancer cells and cancerassociated fibroblasts stimulates epithelialmesenchymal transition and cancer stemness. Cancer Res. 70, 6945–6956.

    Article  PubMed  CAS  Google Scholar 

  • Giannoni, E., Bianchini, F., Calorini, L., and Chiarugi, P. (2011). Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal. 14, 2361–2371.

    Article  PubMed  CAS  Google Scholar 

  • Hermann, P.C., Huber, S.L., Herrler, T., Aicher, A., Ellwart, J.W., Guba, M., Bruns, C.J., and Heeschen, C. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, R.F., Moore, T., Arumugam, T., Ramachandran, V., Amos, K.D., Rivera, A., Ji, B., Evans, D.B., and Logsdon, C.D. (2008). Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 68, 918–926.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y.G., Luo, Y., He, D.L., Li, X., Zhang, L.L., Peng, T., Li, M.C., and Lin, Y.H. (2007). Role of Wnt/beta-catenin signaling path way in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int. J. Urol. 14, 1034–1039.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, J.A., and Pollard, J.W. (2009). Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Kalluri, R. (2009). EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419.

    Article  PubMed  CAS  Google Scholar 

  • Kalluri, R., and Zeisberg, M. (2006). Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401.

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, A., Hahne, J.C., Haddouti, E., Florin, A., Wellmann, A., and Wernert, N. (2006). Tumour-stroma interactions between metastatic prostate cancer cells and fibroblasts. Int. J. Mol. Med. 18, 941–950.

    PubMed  CAS  Google Scholar 

  • Klarmann, G.J., Hurt, E.M., Mathews, L.A., Zhang, X., Duhagon, M.A., Mistree, T., Thomas, S.B., and Farrar, W.L. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin. Exp. Metastasis 26, 433–446.

    Article  PubMed  CAS  Google Scholar 

  • Lebret, S.C., Newgreen, D.F., Thompson, E.W., and Ackland, M.L. (2007). Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res. 9, R19.

    Article  PubMed  Google Scholar 

  • Liao, C.P., Adisetiyo, H., Liang, M., and Roy-Burman, P. (2010). Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res. 70, 7294–7303.

    Article  PubMed  CAS  Google Scholar 

  • Liotta, L.A., and Kohn, E.C. (2001). The microenvironment of the tumour-host interface. Nature 411, 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., He, D.L., Ning, L., Shen, S.L., Li, L., Li, X., Zhau, H.E., and Chung, L.W. (2006). Over-expression of hypoxia-inducible factor-1alpha increases the invasive potency of LNCaP cells in vitro. BJU Int. 98, 1315–1319.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., Cui, X.H., Jiang, Y.G., Zhao, J.H., Zhao, L., Chen, Y.T., Li, M.C., and Lin, Y.H. (2012). Sorting and identification of cancer stem cells in human prostate cancer cell lines. Zhonghua Nan Ke Xue 18, 1062–1068.

    PubMed  CAS  Google Scholar 

  • Luo, Y., Cui, X.H., Jiang, Y.G., He, D.L., Zhao, J.H., Zhao, L., Chen, Y.T., Li, M.C., and Lin, Y.H. (2013). Epithelial-mesenchymal transition of prostate cancer: cancer stem cells or bulk cancer cells. Zhonghua Yi Xue Za Zhi 93, 256–260.

    PubMed  CAS  Google Scholar 

  • Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715.

    Article  PubMed  CAS  Google Scholar 

  • Silzle, T., Randolph, G.J., Kreutz, M., and Kunz-Schughart, L.A. (2004). The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int. J. Cancer 108, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Studebaker, A.W., Storci, G., Werbeck, J.L., Sansone, P., Sasser, A.K., Tavolari, S., Huang, T., Chan, M.W., Marini, F.C., Rosol, T.J., et al. (2008). Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res. 68, 9087–9095.

    Article  PubMed  CAS  Google Scholar 

  • Sung, S.Y., Hsieh, C.L., Law, A., Zhau, H.E., Pathak, S., Multani, A.S., Lim, S., Coleman, I.M., Wu, L.C., Figg, W.D., et al. (2008). Coevolution of prostate cancer and bone stroma in threedimensional coculture: implications for cancer growth and metastasis. Cancer Res. 68, 9996–10003.

    Article  PubMed  CAS  Google Scholar 

  • Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890.

    Article  PubMed  CAS  Google Scholar 

  • Visvader, J.E., and Lindeman, G.J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.F., Ho, D.W., Ng, M.N., Lau, C.K., Yu, W.C., Ngai, P., Chu, P.W., Lam, C.T., Poon, R.T., and Fan, S.T. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J.H., Luo, Y., Jiang, Y.G., He, D.L., and Wu, C.T. (2011). Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1α. Cancer Invest. 29, 377–382.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Luo or Ling Lan.

About this article

Cite this article

Luo, Y., Lan, L., Jiang, YG. et al. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1α/β-catenin-dependent pathway. Mol Cells 36, 138–144 (2013). https://doi.org/10.1007/s10059-013-0096-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0096-8

Keywords

Navigation