Skip to main content
Log in

NeuroD regulates neuronal migration

  • Research Article
  • Published:
Molecules and Cells

Abstract

NeuroD is required for the survival of many subtypes of developing neurons in the vertebrate central nervous system. Because NeuroD-deficient neurons in the hippocampus, cerebellum, and inner ear die prematurely in the early stage of neurogenesis, the role of NeuroD during the later stages of neurogenesis of these cell subtypes is not well understood. In addition, the mechanism of NeuroDdeficient neuronal death has not been investigated. It was hypothesized that NeuroD-dependent neuronal death occurs through a Bax-dependent apoptotic pathway. Based on this hypothesis, this study attempted to rescue neuronal cell death by deleting the Bax gene in NeuroD null mice to investigate the role of NeuroD in surviving neurons. The NeuroD and Bax double null mice displayed a decrease in the number of apoptotic cells in the hippocampus and the cerebellum and the rescue of vestibulocochlear ganglion (VCG) neurons that failed to migrate and innervate. In addition, at E13.5, the NeuroD−/−Bax−/− VCG neurons failed to express TrkB and TrkC, which are known to be essential for the survival of those neurons. These data suggest that neuronal death in NeuroD null mice is mediated by Bax-dependent apoptosis and that NeuroD is required for the migration of VCG neurons. Finally, these data show that TrkB and TrkC expression in E13.5 VCG neurons requires NeuroD and that TrkB and TrkC expression may be necessary for the normal migration and innervations of those neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, J., and Bayer, S.A. (1990). Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 301, 365–381.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Arie, N., Bellen, H.J., Armstrong, D.L., McCall, A.E., Gordadze, P.R., Guo, Q., Matzuk, M.M., and Zoghbi, H.Y. (1997). Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Borghesani, P.R., Peyrin, J.M., Klein, R., Rubin, J., Carter, A.R., Schwartz, P.M., Luster, A., Corfas, G., and Segal, R.A. (2002). BDNF stimulates migration of cerebellar granule cells. Development 129, 1435–1442.

    PubMed  CAS  Google Scholar 

  • Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205–219.

    Article  PubMed  CAS  Google Scholar 

  • Deckwerth, T.L., Elliott, J.L., Knudson, C.M., Johnson, E.M., Jr., Snider, W.D., and Korsmeyer, S.J. (1996). BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Fode, C., Gradwohl, G., Morin, X., Dierich, A., LeMeur, M., Goridis, C., and Guillemot, F. (1998). The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B. (2003a). Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res. Bull. 60, 423–433.

    Article  PubMed  Google Scholar 

  • Fritzsch, B. (2003b). Molecular developmental neurobiology of formation, guidance and survival of primary vestibular neurons. Adv. Space Res. 32, 1495–1500.

    Article  PubMed  CAS  Google Scholar 

  • Hellard, D., Brosenitsch, T., Fritzsch, B., and Katz, D.M. (2004). Cranial sensory neuron development in the absence of brainderived neurotrophic factor in BDNF/Bax double null mice. Dev. Biol. 275, 34–43.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E.J., and Reichardt, L.F. (2003). Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E.J., Wilkinson, G.A., Farinas, I., Backus, C., Zang, K., Wong, S.L., and Reichardt, L.F. (1999). Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo eviden-ce for NT-3 activation of TrkA and TrkB in addition to TrkC. Development 126, 2191–2203.

    PubMed  CAS  Google Scholar 

  • Jahan, I., Kersigo, J., Pan, N., and Fritzsch, B. (2010). Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res. 341, 95–110.

    Article  PubMed  CAS  Google Scholar 

  • Khodosevich, K., and Monyer, H. (2011). Signaling in migrating neurons: from molecules to networks. Front. Neurosci. 5, 28.

    Article  PubMed  Google Scholar 

  • Kim, W.Y. (2012). NeuroD1 is an upstream regulator of NSCL1. Biochem. Biophys. Res. Commun. 419, 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Kim, W.Y., Fritzsch, B., Serls, A., Bakel, L.A., Huang, E.J., Reichardt, L.F., Barth, D.S., and Lee, J.E. (2001). NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128, 417–426.

    PubMed  CAS  Google Scholar 

  • Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A., and Korsmeyer, S.J. (1995). Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.E. (1997). Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol. 7, 13–20.

    Article  PubMed  Google Scholar 

  • Lee, J.E., Hollenberg, S.M., Snider, L., Turner, D.L., Lipnick, N., and Weintraub, H. (1995). Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844.

    Article  PubMed  CAS  Google Scholar 

  • Lindholm, D., Carroll, P., Tzimagiogis, G., and Thoenen, H. (1996). Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur. J. Neurosci 8, 1452–1460.

    Article  PubMed  CAS  Google Scholar 

  • Lindsten, T., Golden, J.A., Zong, W.X., Minarcik, J., Harris, M.H., and Thompson, C.B. (2003). The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool. J. Neurosci. 23, 11112–11119.

    PubMed  CAS  Google Scholar 

  • Liu, M., Pereira, F.A., Price, S.D., Chu, M.J., Shope, C., Himes, D., Eatock, R.A., Brownell, W.E., Lysakowski, A., and Tsai, M.J. (2000). Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 14, 2839–2854.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Q., Kintner, C., and Anderson, D.J. (1996). Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Minichiello, L., and Klein, R. (1996). TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev. 10, 2849–2858.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, T., Maeda, T., and Lee, J.E. (1999). NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 13, 1647–1652.

    Article  PubMed  CAS  Google Scholar 

  • Naya, F.J., Stellrecht, C.M., and Tsai, M.J. (1995). Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9, 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  • Rickmann, M., Amaral, D.G., and Cowan, W.M. (1987). Organization of radial glial cells during the development of the rat dentate gyrus. J. Comp. Neurol. 264, 449–479.

    Article  PubMed  CAS  Google Scholar 

  • Sun, W., Winseck, A., Vinsant, S., Park, O.H., Kim, H., and Oppenheim, R.W. (2004). Programmed cell death of adult-generated hippocampal neurons is mediated by the proapoptotic gene Bax. J. Neurosci. 24, 11205–11213.

    Article  PubMed  CAS  Google Scholar 

  • Tapscott, S.J., and Weintraub, H. (1991). MyoD and the regulation of myogenesis by helix-loop-helix proteins. J. Clin. Invest. 87, 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, E.F., Bothwell, M., Schecterson, L.C., and von Bartheld, C.S. (1994). Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: quantitative analysis in developing rats. Hear. Res. 73, 46–56.

    Article  PubMed  CAS  Google Scholar 

  • White, F.A., Keller-Peck, C.R., Knudson, C.M., Korsmeyer, S.J., and Snider, W.D. (1998). Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci. 18, 1428–1439.

    PubMed  CAS  Google Scholar 

  • Ylikoski, J., Pirvola, U., Moshnyakov, M., Palgi, J., Arumae, U., and Saarma, M. (1993). Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear. Res. 65, 69–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Young Kim.

About this article

Cite this article

Kim, WY. NeuroD regulates neuronal migration. Mol Cells 35, 444–449 (2013). https://doi.org/10.1007/s10059-013-0065-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0065-2

Keywords

Navigation