Skip to main content
Log in

Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form

  • Published:
Molecules and Cells

Abstract

Protein tyrosine phosphatase sigma (PTPσ) plays a vital role in neural development. The extracellular domain of PTPσ binds to various proteoglycans, which control the activity of 2 intracellular PTP domains (D1 and D2). To understand the regulatory mechanism of PTPσ, we carried out structural and biochemical analyses of PTPσ D1D2. In the crystal structure analysis of a mutant form of D1D2 of PTPσ, we unexpectedly found that the catalytic cysteine of D1 is oxidized to cysteine sulfenic acid, while that of D2 remained in its reduced form, suggesting that D1 is more sensitive to oxidation than D2. This finding contrasts previous observations on PTPα. The cysteine sulfenic acid of D1 was further confirmed by immunoblot and mass spectrometric analyses. The stabilization of the cysteine sulfenic acid in the active site of PTP suggests that the formation of cysteine sulfenic acid may function as a stable intermediate during the redox-regulation of PTPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almo, S.C., Bonanno, J.B., Sauder, J.M., Emtage, S., Dilorenzo, T.P., Malashkevich, V., Wasserman, S.R., Swaminathan, S., Eswaramoorthy, S., Agarwal, R., et al. (2007). Structural genomics of protein phosphatases. J. Struct. Funct. Genomics 8, 121–140.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J., and Mustelin, T. (2004). Protein tyrosine phosphatases in the human genome. Cell 117, 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Bilwes, A.M., den Hertog, J., Hunter, T., and Noel, J.P. (1996). Structural basis for inhibition of receptor protein-tyrosine phosphatasealpha by dimerization. Nature 382, 555–559.

    Article  PubMed  CAS  Google Scholar 

  • Blaskovich, M.A. (2009). Drug discovery and protein tyrosine phosphatases. Curr. Med. Chem. 16, 2095–2176.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, J., Tactacan, C.M., Tan, S.X., Lin, R.C., Wouters, M.A., and Dawes, I.W. (2011). Cell cycle sensing of oxidative stress in Saccharomyces cerevisiae by oxidation of a specific cysteine residue in the transcription factor Swi6p. J. Biol. Chem. 286, 5204–5214.

    Article  PubMed  CAS  Google Scholar 

  • Choi, H.J., Kang, S.W., Yang, C.H., Rhee, S.G., and Ryu, S.E. (1998). Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat. Struct. Biol. 5, 400–406.

    Article  PubMed  CAS  Google Scholar 

  • Coles, C.H., Shen, Y., Tenney, A.P., Siebold, C., Sutton, G.C., Lu, W., Gallagher, J.T., Jones, E.Y., Flanagan, J.G., and Aricescu, A.R. (2011). Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science 332, 484–488.

    Article  PubMed  CAS  Google Scholar 

  • Crump, K.E., Juneau, D.G., Poole, L.B., Haas, K.M., and Grayson, J.M. (2012). The reversible formation of cysteine sulfenic acid promotes B-cell activation and proliferation. Eur. J. Immunol. 42, 2152–2164.

    Article  PubMed  CAS  Google Scholar 

  • Elchebly, M., Wagner, J., Kennedy, T.E., Lanctot, C., Michaliszyn, E., Itie, A., Drouin, J., and Tremblay, M.L. (1999). Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma. Nat. Genet. 21, 330–333.

    Article  PubMed  CAS  Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501.

    Article  PubMed  CAS  Google Scholar 

  • Ganguly, A., Sasayama, D., and Cho, H.T. (2012). Regulation of the polarity of protein trafficking by phosphorylation. Mol. Cells 33, 423–430.

    Article  PubMed  CAS  Google Scholar 

  • Groen, A., Overvoorde, J., van der Wijk, T., and den Hertog, J. (2008). Redox regulation of dimerization of the receptor proteintyrosine phosphatases RPTPalpha, LAR, RPTPmu and CD45. FEBS J. 275, 2597–2604.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, G., den Hertog, J., Su, J., Noel, J., Sap, J., and Hunter, T. (1999). Dimerization inhibits the activity of receptor-like proteintyrosine phosphatase-alpha. Nature 401, 606–610.

    Article  PubMed  CAS  Google Scholar 

  • Klomsiri, C., Nelson, K.J., Bechtold, E., Soito, L., Johnson, L.C., Lowther, W.T., Ryu, S.E., King, S.B., Furdui, C.M., and Poole, L.B. (2010). Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol. 473, 77–94.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Lee, S.M., Mukhopadhyay, P., Kim, S.J., Lee, S.C., Ahn, W.S., Yu, M.H., Storz, G., and Ryu, S.E. (2004). Redox regula tion of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11, 1179–1185.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., Wen, W., Wei, Z., Yu, J., Ye, F., Liu, C.H., Hardie, R.C., and Zhang, M. (2011). The INAD scaffold is a dynamic, redoxregulated modulator of signaling in the Drosophila eye. Cell 145, 1088–1101.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Yamamoto, T., Abe, M., Matsumura, H., Hagihara, Y., Goto, T., Yamaguchi, T., and Inoue, T. (2008). Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate. Proc. Natl. Acad. Sci. USA 105, 6238–6242.

    Article  PubMed  CAS  Google Scholar 

  • Nam, H.J., Poy, F., Krueger, N.X., Saito, H., and Frederick, C.A. (1999). Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449–457.

    Article  PubMed  CAS  Google Scholar 

  • Nam, H.J., Poy, F., Saito, H., and Frederick, C.A. (2005). Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J. Exp. Med. 201, 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology Vol. 276, Macromolecular Crystallography, part A, C.W. Carter, Jr. and R.M. Sweet, eds. (Academic Press), pp. 307–326.

    Chapter  Google Scholar 

  • Persson, C., Sjoblom, T., Groen, A., Kappert, K., Engstrom, U., Hellman, U., Heldin, C.H., den Hertog, J., and Ostman, A. (2004). Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 101, 1886–1891.

    Article  PubMed  CAS  Google Scholar 

  • Piana, S., Lindorff-Larsen, K., Dirks, R.M., Salmon, J.K., Dror, R.O., and Shaw, D.E. (2012). Evaluating the effects of cutoffs and treatment of long-range electrostatics in protein folding simulations. PLoS One 7, e39918.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, S.E. (2012). Structural mechanism of disulphide bond-mediated redox switches. J. Biochem. 151, 579–588.

    Article  PubMed  CAS  Google Scholar 

  • Salmeen, A., Andersen, J.N., Myers, M.P., Meng, T.C., Hinks, J.A., Tonks, N.K., and Barford, D. (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769–773.

    Article  PubMed  CAS  Google Scholar 

  • Salsbury, F.R., Jr., Knutson, S.T., Poole, L.B., and Fetrow, J.S. (2008). Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci. 17, 299–312.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y., Tenney, A.P., Busch, S.A., Horn, K.P., Cuascut, F.X., Liu, K., He, Z., Silver, J., and Flanagan, J.G. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596.

    Article  PubMed  CAS  Google Scholar 

  • Siu, R., Fladd, C., and Rotin, D. (2007). N-cadherin is an in vivo substrate for protein tyrosine phosphatase sigma (PTPsigma) and participates in PTPsigma-mediated inhibition of axon growth. Mol. Cell. Biol. 27, 208–219.

    Article  PubMed  CAS  Google Scholar 

  • Sivaramakrishnan, S., Cummings, A.H., and Gates, K.S. (2010). Protection of a single-cysteine redox switch from oxidative destruction: on the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B. Bioorg. Med. Chem. Lett. 20, 444–447.

    Article  PubMed  CAS  Google Scholar 

  • Tabernero, L., Aricescu, A.R., Jones, E.Y., and Szedlacsek, S.E. (2008). Protein tyrosine phosphatases: structure-function relationships. FEBS J. 275, 867–882.

    Article  PubMed  CAS  Google Scholar 

  • Tonks, N.K. (2005). Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667–670.

    Article  PubMed  CAS  Google Scholar 

  • Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833–846.

    Article  PubMed  CAS  Google Scholar 

  • van Montfort, R.L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003). Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773–777.

    Article  PubMed  Google Scholar 

  • Wallace, M.J., Batt, J., Fladd, C.A., Henderson, J.T., Skarnes, W., and Rotin, D. (1999). Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat. Genet. 21, 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Groen, A., Lemeer, S., Jans, A., Slijper, M., Roe, S.M., den Hertog, J., and Barford, D. (2007). Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Biochemistry 46, 709–719.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, S.K., Starnes, T.W., Deng, Q., and Huttenlocher, A. (2011). Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, A., Carrell, R.W., Murphy, M.P., Wei, Z., Yan, Y., Stanley, P.L., Stein, P.E., Broughton Pipkin, F., and Read, R.J. (2010). A redox switch in angiotensinogen modulates angiotensin release. Nature 468, 108–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Eon Ryu.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Jeon, T.J., Chien, P.N., Chun, HJ. et al. Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form. Mol Cells 36, 55–61 (2013). https://doi.org/10.1007/s10059-013-0033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0033-x

Keywords

Navigation