Skip to main content
Log in

pVHL-mediated transcriptional repression of c-Myc by recruitment of histone deacetylases

  • Published:
Molecules and Cells

Abstract

The biological functions of Myc are to regulate cell growth, apoptosis, cell differentiation and stem-cell self-renewal. Abnormal accumulation of c-Myc is able to induce excessive proliferation of normal cells. von Hippel-Lindau protein (pVHL) is a key regulator of hypoxia-inducible factor1α HIF1α), thus accumulation and hyperactivation of HIF1α is the most prominent feature of VHL-mutated renal cell carcinoma. Interestingly, the Myc pathway is reported to be activated in renal cell carcinoma even though the precise molecular mechanism still remains to be established. Here, we demonstrated that pVHL locates at the c-Myc promoter region through physical interaction with Myc. Furthermore, pVHL reinforces HDAC1/2 recruitment to the Myc promoter, which leads to the auto-suppression of Myc. Therefore, one possible mechanism of Myc auto-suppression by pVHL entails removing histone acetylation. Our study identifies a novel mechanism for pVHL-mediated negative regulation of c-Myc transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoyama, C., Peters, J., Senadheera, S., Liu, P., and Shimada, H. (1998). Uterine cervical dysplasia and cancer: identification of cmyc status by quantitative polymerase chain reaction. Diagn. Mol. Pathol. 7, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Banks, R.E., Tirukonda, P., Taylor, C, Hornigold, N., Astuti, D., Cohen, D., Maher, E.R., Stanley, A.J., Harnden, P., Joyce, A., et al. (2006). Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res. 66, 2000–2011.

    Article  PubMed  CAS  Google Scholar 

  • Bindra, R.S., Vasselli, J.R., Stearman, R., Linehan, W.M., and Klausner, R.D. (2002). VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res. 62, 3014–3019.

    PubMed  CAS  Google Scholar 

  • Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H.J., Oh, Y.J., Kwon J., Kwon, J.Y., Kim, K.S., Kim, H. (2010). c-Myc stimulates cell invasion by inhibiting FBX8 function. Mol. Cells 30, 355–362.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, H.T. (1999). Advances in the molecular basis of renal neoplasia. Curr. Opin. Nephrol. Hypertens. 8, 325–331

    Article  PubMed  CAS  Google Scholar 

  • Costa, L.J., and Drabkin, H.A. (2007). Renal cell carcinoma: new developments in molecular biology and potential for targeted therapies. Oncologist 12, 1404–1415.

    Article  PubMed  CAS  Google Scholar 

  • Dang, C.V., Kim, J.W., Gao, P., and Yustein, J. (2008). The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8, 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Facchini, L.M., Chen, S., Marhin, W., Lear, J.N., and Penn, L.Z. (1997). The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol. Cell. Biol. 17, 100–114.

    PubMed  CAS  Google Scholar 

  • Facchini, L.M., and Penn, L.Z. (1998). The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J. 12, 633–651.

    PubMed  CAS  Google Scholar 

  • Goodliffe, J.M., Wieschaus, E., and Cole, M.D. (2005). Polycomb mediates Myc autorepression and its transcriptional control of many loci in Drosophila. Genes Dev. 19, 2941–2946.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Schoell, M.C., and Freeman, R.S. (2009). The von Hippel-Lindau protein sensitizes renal carcinoma cells to apoptotic stimuli through stabilization of BIM (EL). Oncogene 28, 1864–1874.

    Article  PubMed  CAS  Google Scholar 

  • Hergovich, A., Lisztwan, J., Barry, R., Ballschmieter, P., and Krek, W. (2003). Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat. Cell Biol. 5, 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki, H., Yano, H., Tsuneoka, M., Ogasawara, S., Akiba, J., Nishida, N., Kojiro, S., Fukahori, S., Moriya, F., Matsuoka, K., et al. (2007). Overexpression of the myc target gene Mina53 in advanced renal cell carcinoma. Pathol. Int. 57, 672–680.

    Article  PubMed  CAS  Google Scholar 

  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., Kaelin, Jr. W.G. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, T., Bilim, V., Takahashi, K., and Tomita, Y. (1999). Infrequent alteration of p53 pathway in metastatic renal cell carcinoma. Oncol. Rep. 6, 329–333.

    PubMed  CAS  Google Scholar 

  • Kim, M.K., and Carroll, W.L. (2004). Autoregulation of the N-myc gene is operative in neuroblastoma and involves histone deacetylase 2. Cancer 101, 2106–2115.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, K., Klco, J., Nakamura, E., Lechpammer, M., and Kaelin, W.G. (2002). Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, J.F., and Tansey, W.P. (2008). Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 68, 3624–3629.

    Article  PubMed  CAS  Google Scholar 

  • Lam, J.S., Leppert, J.T., Figlin, R.A., and Belldegrun, A.S. (2005). Role of molecular markers in the diagnosis and therapy of renal cell carcinoma. Urology 66, 1–9.

    Article  PubMed  Google Scholar 

  • Lewis, M.D., and Roberts, B.J. (2003). Role of nuclear and cytoplasmic localization in the tumour-suppressor activity of the von Hippel-Lindau protein. Oncogene 22, 3992–3997.

    Article  PubMed  CAS  Google Scholar 

  • Liao, D.J., and Dickson, R.B. (2000). c-Myc in breast cancer. Endocr. Relat. Cancer 7, 143–164.

    Article  PubMed  CAS  Google Scholar 

  • Liao, J.M., and Lu, H. (2011). Auto-regulatory suppression of c-Myc by miR-185-3p. J. Biol. Chem. 286, 33901–33909

    Article  PubMed  CAS  Google Scholar 

  • Lowe, S.W. (1995). Cancer therapy and p53. Curr. Opin. Oncol. 7, 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Q., Li, J., Cenkci, B., and Kretzner, L. (2004). Autorepression of c-myc requires both initiator and E2F-binding site elements and cooperation with the p107 gene product. Oncogene 23, 1088–1097.

    Article  PubMed  CAS  Google Scholar 

  • Mack, F.A., Rathmell, W.K., Arsham, A.M., Gnarra, J., Keith, B., and Simon, M.C. (2003). Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. Cancer Cell 3, 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Mahon, P.C., Hirota, K., and Semenza, G.L. (2001). FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686.

    Article  PubMed  CAS  Google Scholar 

  • Maranchie, J.K., Vasselli, R., Riss, J., Bonifacino, J.S., Linehan, W.M., and Klausner, R.D. (2002). The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, G.M., Gherardi, S.N., Xu, N., Neiron, Z., Trahair, T., Scarlett, C.J., Chang, D.K., Liu, P.Y., Jankowski, K., Iraci, N., et al. (2010). Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects. Oncogene 29, 5957–5968.

    Article  PubMed  CAS  Google Scholar 

  • Masramon, L., Arribas, R., Tórtola, S., Perucho, M., and Peinado, M.A. (1998). Moderate amplifications of the c-myc gene correlate with molecular and clinicopathological parameters in colorectal cancer. Br. J. Cancer 77, 2349–2356.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., et al. (1999). The tumor suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature 399, 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Penn, L.J., Brooks, M.W., Laufer, E.M., and Land, H. (1990). Negative autoregulation of c-myc transcription. EMBO J. 9, 1113–1121.

    PubMed  CAS  Google Scholar 

  • Roe, J.S., and Youn, H.D. (2006). The positive regulation of p53 by the tumor suppressor VHL. Cell Cycle 5, 2054–2056.

    Article  PubMed  CAS  Google Scholar 

  • Roe, J.S., Kim, H.S., Lee, S.M., Kim, S.T., Cho, E.J., and Youn, H.D. (2006). p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol. Cell 22, 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Roe, J.S., Kim, H.R., Hwang, I.Y., Cho, E.J., and Youn, H.D. (2011a). von Hippel-Lindau protein promotes Skp2 destabilization on DNA damage. Oncogene 30, 3127–3138.

    Article  PubMed  CAS  Google Scholar 

  • Roe, J.S., Kim, H.R., Hwang, I.Y., Ha, N.C., Kim, S.T., Cho, E.J., and Youn, H.D. (2011b). Phosphorylation of von Hippel-Lindau protein bycheckpoint kinase 2 regulates p53 transactivation. Cell Cycle 10, 3920–3928.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, V., Sattler, H.P., Bund, T., Bonkhoff, H., Fixemer, T., Bachmann, C., Lensch, R., Unteregger, G., Stoeckle, M., and Wullich, B. (2000). Expression of the human telomerase reverse transcriptase is not related to telomerase activity in normal and malignant renal tissue. Clin. Cancer Res. 6, 4803–4809.

    PubMed  CAS  Google Scholar 

  • Satou, A., Taira, T., Iguchi-Ariga, S.M., and Ariga, H. (2001). A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Mycbinding protein. J. Biol. Chem. 276, 46562–46567.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G.L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann. Rev. Cell Dev. Biol. 15, 551–578.

    Article  CAS  Google Scholar 

  • Semenza, G.L. (2006). VHL and p53: tumor suppressors team up to prevent cancer. Mol. Cell 22, 437–439.

    Article  PubMed  CAS  Google Scholar 

  • Sivak, L.E., Tai, K.F., Smith, R.S., Dillon, P.A., Brodeur, G.M., and Carroll, W.L. (1997). Autoregulation of the human N-myc oncogene is disrupted in amplified but not single-copy neuroblastoma cell lines. Oncogene 15, 1937–1946

    Article  PubMed  CAS  Google Scholar 

  • Tang, S.W., Chang, W.H., Su, Y.C., Chen, Y.C., Lai, Y.H., Wu, P.T., Hsu, C.I., Lin, W.C., Lai, M.K., and Lin, J.Y. (2009). MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett. 273, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, E.B. (1998). The many roles of c-Myc in apoptosis. Annu. Rev. Physiol. 60, 575–600.

    Article  PubMed  CAS  Google Scholar 

  • Wierstra, I., and Alves. J. (2008). The c-myc promoter: still Myster Y and challenge. Adv. Cancer Res. 99, 113–333.

    Article  PubMed  Google Scholar 

  • Wykoff, C.C., Sotiriou, C., Cockman, M.E., Ratcliffe, P.J., Maxwell, P., Liu, E., and Harris, A.L. (2004). Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br. J. Cancer 90, 1235–1243.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, M., Doucette, D., Iliopoulos, N., and Siddiqui, O. (2004). Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL−/− tumors. Mol. Cancer Res. 2, 89–95.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Jung Cho or Hong-Duk Youn.

About this article

Cite this article

Hwang, IY., Roe, JS., Seol, JH. et al. pVHL-mediated transcriptional repression of c-Myc by recruitment of histone deacetylases. Mol Cells 33, 195–201 (2012). https://doi.org/10.1007/s10059-012-2268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2268-3

Keywords

Navigation