Skip to main content
Log in

Identification of a novel cell-penetrating peptide from human phosphatidate phosphatase LPIN3

  • Published:
Molecules and Cells

Abstract

Biomolecules such as proteins, DNA, and RNA are macromolecules and can not cross the cell membrane. However, cell-penetrating peptide (CPP) has been shown to deliver therapeutic biomolecules successfully into cells. The various and widely used CPPs including TAT, VP22, and Antp are mostly non-human originated CPPs, and are limited by their potential toxicity and immunogenicity. We report here on a newly identified novel cell-penetrating sequence (LPIN; RRKRRRRRK) from the nuclear localization sequence (NLS) of human nuclear phosphatase, LPIN3. LPIN-EGFP recombinant protein was concentration- and time-dependently delivered into cells and localized to the nucleus as well as the cytoplasm. It penetrated the cell membrane by lipid raft-mediated endocytosis by binding to heparan sulfate proteoglycan. LPIN-EGFP was successfully delivered into primary mouse splenocytes in vitro and it could be delivered into various tissues including liver, kidney, and intestine in mice after intra-peritoneal injection. This research suggests that LPIN-CPP could be used in a drug delivery system to deliver therapeutic biomolecules including peptides, proteins, DNA, and RNA and without the limitations of non-human originated CPPs such as TAT-CPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Choi, J.M., Ahn, M.H., Chae, W.J., Jung, Y.G., Park, J.C., Song, H.M., Kim, Y.E., Shin, J.A., Park, C.S., Park, J.W., et al. (2006). Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat. Med. 12, 574–579.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.M., Kim, S.H., Shin, J.H., Gibson, T., Yoon, B.S., Lee, D.H., Lee, S.K., Bothwell, A.L., and Lim, J.S. (2008). Transduction of the cytoplasmic domain of CTLA-4 inhibits TcR-specific activation signals and prevents collagen-induced arthritis. Proc. Natl. Acad. Sci. USA 105, 19875–19880.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.M., Shin, J.H., Sohn, M.H., Harding, M.J., Park, J.H., Tobiasova, Z., Kim, D.Y., Maher, S.E., Chae, W.J., Park, S.H., et al. (2010). Cell-permeable Foxp3 protein alleviates autoimmune disease associated with inflammatory bowel disease and allergic airway inflammation. Proc. Natl. Acad. Sci. USA 107, 18575–18580.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.M., Sohn, J.H., Park, T.Y., Park, J.W., and Lee, S.K. (2012). Cell permeable NFAT inhibitory peptide Sim-2-VIVIT inhibits Tcell activation and alleviates allergic airway inflammation and hyper-responsiveness. Immunol. Lett. 143, 170–176.

    Article  PubMed  CAS  Google Scholar 

  • De Coupade, C., Fittipaldi, A., Chagnas, V., Michel, M., Carlier, S., Tasciotti, E., Darmon, A., Ravel, D., Kearsey, J., Giacca, M., et al. (2005). Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem. J. 390, 407–418.

    Article  PubMed  Google Scholar 

  • Derossi, D., Joliot, A.H., Chassaing, G., and Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450.

    PubMed  CAS  Google Scholar 

  • Deshayes, S., Morris, M.C., Divita, G., and Heitz, F. (2005). Cellpenetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol. Life Sci. 62, 1839–1849.

    Article  PubMed  CAS  Google Scholar 

  • Donkor, J., Sariahmetoglu, M., Dewald, J., Brindley, D.N., and Reue, K. (2007). Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282, 3450–3457.

    Article  PubMed  CAS  Google Scholar 

  • Duchardt, F., Ruttekolk, I.R., Verdurmen, W.P., Lortat-Jacob, H., Burck, J., Hufnagel, H., Fischer, R., van den Heuvel, M., Lowik, D.W., Vuister, G.W., et al. (2009). A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J. Biol. Chem. 284, 36099–36108.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi, A., Meade, B.R., Chang, Y.C., Fredrickson, C.T., Willert, K., Puri, N., and Dowdy, S.F. (2009). Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat. Biotechnol. 27, 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, G., and O’Hare, P. (1997). Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., Kohler, K., Fotin-Mleczek, M., and Brock, R. (2004). A stepwise dissection of the intracellular fate of cationic cellpenetrating peptides. J. Biol. Chem. 279, 12625–12635.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, A.D., and Pabo, C.O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Heitz, F., Morris, M.C., and Divita, G. (2009). Twenty years of cellpenetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol. 157, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss, R.S., McConnell, K.W., Bullok, K., Davis, C.G., Chang, K.C., Schwulst, S.J., Dunne, J.C., Dietz, G.P., Bahr, M., McDunn, J.E., et al. (2006). TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J. Immunol. 176, 5471–5477.

    PubMed  CAS  Google Scholar 

  • Martin, M.E., and Rice, K.G. (2007). Peptide-guided gene delivery. AAPS J. 9, E18–29.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M.C., Depollier, J., Mery, J., Heitz, F., and Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173–1176.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, H., Matsushita, M., Okitsu, T., Moriwaki, A., Tomizawa, K., Kang, S., Li, S.T., Kobayashi, N., Matsumoto, S., Tanaka, K., et al. (2004). A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat. Med. 10, 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Ogris, M., and Wagner, E. (2002). Targeting tumors with non-viral gene delivery systems. Drug Discov. Today 7, 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Reue, K., and Brindley, D.N. (2008). Thematic review series: glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J. Lipid Res. 49, 2493–2503.

    CAS  Google Scholar 

  • Richard, J.P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M.J., Chernomordik, L.V., and Lebleu, B. (2003). Cell-penetra-ting peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Rittner, K., Benavente, A., Bompard-Sorlet, A., Heitz, F., Divita, G., Brasseur, R., and Jacobs, E. (2002). New basic membranedestabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol. Ther. 5, 104–114.

    Article  PubMed  CAS  Google Scholar 

  • Schwarze, S.R., Ho, A., Vocero-Akbani, A., and Dowdy, S.F. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E.L., and Dowdy, S.F. (2004). Cell penetrating peptides in drug delivery. Pharm. Res. 21, 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug. Discov. 4, 145–160.

    Article  PubMed  CAS  Google Scholar 

  • Valdearcos, M., Esquinas, E., Meana, C., Gil-de-Gomez, L., Guijas, C., Balsinde, J., and Balboa, M.A. (2011). Subcellular localiza-tion and role of lipin-1 in human macrophages. J. Immunol. 186, 6004–6013.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg, A., and Dowdy, S.F. (2011). Protein transduction domain delivery of therapeutic macromolecules. Curr. Opin. Biotechnol. 22, 888–893.

    Article  PubMed  Google Scholar 

  • Wadia, J.S., Stan, R.V., and Dowdy, S.F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10, 310–315.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Gao, P., Xiao, W., Fan, L.Q., Wang, F.J., Li, S.X., and Liu, J.W. (2011). A novel human derived cell-penetrating peptide in drug delivery. Mol. Biol. Rep. 38, 2649–2656.

    Article  PubMed  CAS  Google Scholar 

  • Zorko, M., and Langel, U. (2005). Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev. 57, 529–545.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Min Choi.

About this article

Cite this article

Lim, S., Kim, Wj., Kim, Yh. et al. Identification of a novel cell-penetrating peptide from human phosphatidate phosphatase LPIN3. Mol Cells 34, 577–582 (2012). https://doi.org/10.1007/s10059-012-0284-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0284-y

Keywords

Navigation