Skip to main content
Log in

A new anti-c-met antibody selected by a mechanism-based dual-screening method: Therapeutic potential in cancer

  • Published:
Molecules and Cells

Abstract

c-Met, the high affinity receptor for hepatocyte growth factor (HGF), is one of the most frequently activated tyrosine kinases in many human cancers and a target for cancer therapy. However, inhibitory targeting of c-Met with antibodies has proven difficult, because most antibodies have intrinsic agonist activity. Therefore, the strategy for reducing the agonism is critical for successful development of cancer therapies based on anti-c-Met antibodies. Here we developed a mechanism-based assay method for rapid screening of anti-c-Met antibodies, involving the determination of Akt phosphorylation and c-Met degradation for agonism and efficacy, respectively. Using the method, we identified an antibody, F46, that binds to human c-Met with high affinity (Kd = 2.56 nM) and specificity, and induces the degradation of c-Met in multiple cancer cells (including MKN45, a gastric cancer cell line) with minimal activation of c-Met signaling. F46 induced c-Met internalization in both HGF-dependent and HGF-independent cells, suggesting that the degradation of c-Met results from antibody-mediated receptor internalization. Furthermore, F46 competed with HGF for binding to c-Met, resulting in the inhibition of both HGF-mediated invasion and angiogenesis. Consistently, F46 inhibited the proliferation of MKN45 cells, in which c-Met is constitutively activated in an HGF-independent manner. Xenograft analysis revealed that F46 markedly inhibits the growth of subcutaneously implanted gastric and lung tumors. These results indicate that F46, identified by a novel mechanism-based assay, induces c-Met degradation with minimal agonism, implicating a potential role of F46 in therapy of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benvenuti, S., and Comoglio, P.M. (2007). The MET receptor tyrosine kinase in invasion and metastasis. J. Cell. Physiol. 213, 316–325.

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier, C., and Gherardi, E. (1998). Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 8, 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G.F. (2003). Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925.

    Article  PubMed  CAS  Google Scholar 

  • Boccaccio, C., and Comoglio, P.M. (2006). Invasive growth, a METdriven genetic programme for cancer and stem cells. Nat. Rev. Cancer 6, 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Borowiak, M., Garratt, A.N., Wustefeld, T., Strehle, M., Trautwein, C., and Birchmeier, C. (2004). Met provides essential signals for liver regeneration. Proc. Natl. Acad. Sci. USA 101, 10608–10613.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, T., Coxon, A., Meyer, S., Sun, J., Rex, K., Tsuruda, T., Chen, Q., Ho, S.Y., Li, L., Kaufman, S., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Metdependent human tumors. Cancer Res. 66, 1721–1729.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, T.L., Sun, J., Meyer, S., Tsuruda, T.S., Elliott, G., Chen, Q., Haniu, M., Barron, W.F., Juan, T., Zhang, K., et al. (2010). Biochemical characterization of AMG 102, a neutralizing, fully human monoclonal antibody to human and nonhuman primate hepatocyte growth factor. Mol. Cancer Ther. 9, 400–409.

    Article  PubMed  CAS  Google Scholar 

  • Bussolino, F., Di Renzo, M.F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., Gaudino, G., Tamagnone, L., Coffer, A., and Comoglio, P.M. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–641.

    Article  PubMed  CAS  Google Scholar 

  • Cao, B., Su, Y., Oskarsson, M., Zhao, P., Kort, E.J., Fisher, R.J., Wang, L.M., and Vande Woude, G.F. (2001). Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc. Natl. Acad. Sci. USA 98, 7443–7448.

    Article  PubMed  CAS  Google Scholar 

  • Chmielowiec, J., Borowiak, M., Morkel, M., Stradal, T., Munz, B., Werner, S., Wehland, J., Birchmeier, C., and Birchmeier, W. (2007). c-Met is essential for wound healing in the skin. J. Cell Biol. 177, 151–162.

    Article  PubMed  CAS  Google Scholar 

  • Comoglio, P.M., and Trusolino, L. (2002). Invasive growth, from development to metastasis. J. Clin. Invest. 109, 857–862.

    PubMed  CAS  Google Scholar 

  • Cragg, M.S., French, R.R., and Glennie, M.J. (1999). Signaling antibodies in cancer therapy. Curr. Opin. Immun. 11, 541–547.

    Article  CAS  Google Scholar 

  • Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Dis. 3, 391–400.

    Article  CAS  Google Scholar 

  • Gschwind, A., Fischer, O.M., and Ullrich, A. (2004). The discovery of receptor tyrosine kinases, targets for cancer therapy. Nat. Rev. Cancer 4, 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer, the next generation. Cell 144, 646–674.

    Article  PubMed  CAS  Google Scholar 

  • Huh, C.G., Factor, V.M., Sanchez, A., Uchida, K., Conner, E.A., and Thorgeirsson, S.S. (2004). Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc. Natl. Acad. Sci. USA 101, 4477–4482.

    Article  PubMed  CAS  Google Scholar 

  • Jin, H., Yang, R., Zheng, Z., Romero, M., Ross, J., Bou-Reslan, H., Carano, R.A., Kasman, I., Mai, E., Young, J., et al. (2008). Met-MAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res. 68, 4360–4368.

    Article  PubMed  CAS  Google Scholar 

  • Jo, S., Hong, S.W., Yoo, J.W., Lee, C.H., Kim, S., Kim, S., and Lee, D. (2011). Selection and optimization of asymmetric siRNA targeting the human c-MET gene. Mol. Cells 32, 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.J., Wang, L., Su, Y.C., Gillespie, G.Y., Salhotra, A., Lal, B., and Laterra, J. (2006). Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin. Cancer Res.12, 1292–1298.

    Article  CAS  Google Scholar 

  • Lamszus, K., Laterra, J., Westphal, M., and Rosen, E.M. (1999). Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int. J. Dev. Neurosci. 17, 517–530.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Schmitz, K.R., Jeffrey, P.D., Wiltzius, J.J., Kussie, P., and Ferguson, K.M. (2005). Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7, 301–311.

    Article  PubMed  CAS  Google Scholar 

  • Ma, P.C., Jagadeeswaran, R., Jagadeesh, S., Tretiakova, M.S., Nallasura, V., Fox, E.A., Hansen, M., Schaefer, E., Naoki, K., Lader, A., et al. (2005). Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 65, 1479–1488.

    Article  PubMed  CAS  Google Scholar 

  • Martens, T., Schmidt, N.O., Eckerich, C., Fillbrandt, R., Merchant, M., Schwall, R., Westphal, M., and Lamszus, K. (2006). A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 12, 6144–6152.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Tohyama, O., Yamaguchi, A., Matsushima, T., Takahashi, K., Funasaka, S., Shirotori, S., Asada, M., and Obaishi, H. (2010). E7050, a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Sci. 101, 210–215.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, K., Marion, P.L., Nakai, H., Meuse, L., Cullen, J.M., Bordier, B.B., Schwall, R., Greenberg, H.B., Glenn, J.S., and Kay, M.A. (2000). Sustained survival of human hepatocytes in mice, A model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nat. Med. 6, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Prat, M., Crepaldi, T., Pennacchietti, S., Bussolino, F., and Comoglio, P.M. (1998). Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J. Cell Sci. 111 (Pt 2), 237–247.

    PubMed  CAS  Google Scholar 

  • Trusolino, L., and Comoglio, P.M. (2002). Scatter-factor and semaphorin receptors, cell signalling for invasive growth. Nat. Rev. Cancer 2, 289–300.

    Article  PubMed  CAS  Google Scholar 

  • Trusolino, L., Bertotti, A., and Comoglio, P.M. (2010). MET signalling, principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 11, 834–848.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang Ho Cheong or Kyung-Ah Kim.

About this article

Cite this article

Oh, Y.M., Song, YJ., Lee, S.B. et al. A new anti-c-met antibody selected by a mechanism-based dual-screening method: Therapeutic potential in cancer. Mol Cells 34, 523–529 (2012). https://doi.org/10.1007/s10059-012-0194-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0194-z

Keywords

Navigation