Skip to main content
Log in

BRCA1 and MicroRNAs: Emerging networks and potential therapeutic targets

  • Minireview
  • Published:
Molecules and Cells

Abstract

BRCA1 is a well-known tumor suppressor implicated in familial breast and ovarian cancer. Since its cloning in 1994, numerous studies have established BRCA1’s role in diverse cellular and biochemical processes, such as DNA damage repair, cell cycle control, and transcriptional regulation as well as ubiquitination. In addition, a number of recent studies have functionally linked this tumor suppressor to another important cellular regulator, microRNAs, which are short (19–22 nt) RNAs that were discovered in the nematode in 1993. Soon their presence and function were validated in mammals, and since then, the role of microRNAs has been actively investigated in almost all biological processes, including cancer. In this review, we will describe recent progress in the understanding of the BRCA1 function through microRNAs and the role of microRNAs in regulating BRCA1, with emphasis on the implication of these processes on the development and progression of cancer. We will also discuss the therapeutic potential of microRNA mimics or inhibitors of microRNAs to affect BRCA1 function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiyar, S.E., Cho, H., Lee, J., and Li, R. (2007). Concerted transcriptional regulation by BRCA1 and COBRA1 in breast cancer cells. Int. J. Biol. Sci. 3, 486–492.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, S.F., Schlegel, B.P., Nakajima, T., Wolpin, E.S., and Parvin, J.D. (1998). BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat. Genet. 19, 254–256.

    Article  PubMed  CAS  Google Scholar 

  • Andreakos, E., Sacre, S., Foxwell, B.M., and Feldmann, M. (2005). The toll-like receptor-nuclear factor kappaB pathway in rheumatoid arthritis. Front. Biosci. 10, 2478–2488.

    Article  PubMed  CAS  Google Scholar 

  • Bandi, N., Zbinden, S., Gugger, M., Arnold, M., Kocher, V., Hasan, L., Kappeler, A., Brunner, T., and Vassella, E. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rbdependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 69, 5553–5559.

    Article  PubMed  CAS  Google Scholar 

  • Bao, B., Ali, S., Banerjee, S., Wang, Z., Logna, F., Azmi, A.S., Kong, D., Ahmad, A., Li, Y., Padhye, S., et al. (2012). Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 72, 335–345.

    Article  PubMed  CAS  Google Scholar 

  • Bhaumik, D., Scott, G.K., Schokrpur, S., Patil, C.K., Campisi, J., and Benz, C.C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643–5647.

    Article  PubMed  CAS  Google Scholar 

  • Castellano, L., Giamas, G., Jacob, J., Coombes, R.C., Lucchesi, W., Thiruchelvam, P., Barton, G., Jiao, L.R., Wait, R., Waxman, J., et al. (2009). The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc. Natl. Acad. Sci. USA 106, 15732–15737.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., Wang, R.H., Akagi, K., Kim, K.A., Martin, B.K., Cavallone, L., Haines, D.C., Basik, M., Mai, P., Poggi, E., et al. (2011). Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat. Med. 17, 1275–1282.

    Article  PubMed  CAS  Google Scholar 

  • Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949.

    Article  PubMed  CAS  Google Scholar 

  • Cittelly, D.M., Das, P.M., Salvo, V.A., Fonseca, J.P., Burow, M.E., and Jones, F.E. (2010). Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 31, 2049–2057.

    Article  PubMed  CAS  Google Scholar 

  • Cubillos-Ruiz, J.R., Baird, J.R., Tesone, A.J., Rutkowski, M.R., Scarlett, U.K., Camposeco-Jacobs, A.L., Anadon-Arnillas, J., Harwood, N.M., Korc, M., Fiering, S.N., et al. (2012). Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res. 72, 1683–1693.

    Article  PubMed  CAS  Google Scholar 

  • Easton, D.F., Ford, D., and Bishop, D.T. (1995). Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 56, 265–271.

    CAS  Google Scholar 

  • Fackenthal, J.D., and Olopade, O.I. (2007). Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat. Rev. Cancer 7, 937–948.

    Article  PubMed  CAS  Google Scholar 

  • Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O’Connor, M.J., et al. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A.I., Buisson, M., Bertrand, P., Rimokh, R., Rouleau, E., Lopez, B.S., Lidereau, R., Mikaelian, I., and Mazoyer, S. (2011a). Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol. Med. 3, 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A.I., Cox, D.G., Barjhoux, L., Verny-Pierre, C., Barnes, D., Antoniou, A.C., Stoppa-Lyonnet, D., Sinilnikova, O.M., and Mazoyer, S. (2011b). The rs2910164:G>C SNP in the MIR146A gene is not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum. Mutat. 32, 1004–1007.

    Article  CAS  Google Scholar 

  • Gelmon, K.A., Tischkowitz, M., Mackay, H., Swenerton, K., Robidoux, A., Tonkin, K., Hirte, H., Huntsman, D., Clemons, M., Gilks, B., et al. (2011). Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triplenegative breast cancer: a phase 2, multicentre, open-label, nonrandomised study. Lancet Oncol. 12, 852–861.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, M.E., Li, X., Toy, K., DuPrie, M., Ventura, A.C., Banerjee, M., Ljungman, M., Merajver, S.D., and Kleer, C.G. (2009). Downregulation of EZH2 decreases growth of estrogen receptornegative invasive breast carcinoma and requires BRCA1. Oncogene 28, 843–853.

    Article  PubMed  Google Scholar 

  • Gorski, J.J., Savage, K.I., Mulligan, J.M., McDade, S.S., Blayney, J.K., Ge, Z., and Harkin, D.P. (2011). Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Res. 39, 9536–9548.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A., Farshid, G., Vadas, M.A., Khew-Goodall, Y., and Goodall, G.J. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–158.

    Article  PubMed  CAS  Google Scholar 

  • Harkin, D.P., Bean, J.M., Miklos, D., Song, Y.H., Truong, V.B., Englert, C., Christians, F.C., Ellisen, L.W., Maheswaran, S., Oliner, J.D., et al. (1999). Induction of GADD45 and JNK/SAPKdependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586.

    Article  PubMed  CAS  Google Scholar 

  • Heyn, H., Engelmann, M., Schreek, S., Ahrens, P., Lehmann, U., Kreipe, H., Schlegelberger, B., and Beger, C. (2011). MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int. J. Cancer 129, 2797–2806.

    Article  PubMed  CAS  Google Scholar 

  • Huen, M.S., Sy, S.M., and Chen, J. (2010). BRCA1 and its toolbox for the maintenance of genome integrity. Nat. Rev. Mol. Cell Biol. 11, 138–148.

    Article  PubMed  CAS  Google Scholar 

  • Iorio, M.V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., Menard, S., Croce, C.M., and Tagliabue, E. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Res. 69, 2195–2200.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, S., Zhang, H.W., Lu, M.H., He, X.H., Li, Y., Gu, H., Liu, M.F., and Wang, E.D. (2010). MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127.

    Article  PubMed  CAS  Google Scholar 

  • John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human microRNA targets. PLoS Biol. 2, e363.

    Article  PubMed  Google Scholar 

  • Jones, K.L., and Buzdar, A.U. (2004). A review of adjuvant hormo nal therapy in breast cancer. Endocr. Relat. Cancer 11, 391–406.

    Article  PubMed  CAS  Google Scholar 

  • Kong, W., He, L., Coppola, M., Guo, J., Esposito, N.N., Coppola, D., and Cheng, J.Q. (2010). MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem. 285, 17869–17879.

    Article  PubMed  CAS  Google Scholar 

  • Kurowska-Stolarska, M., Alivernini, S., Ballantine, L.E., Asquith, D.L., Millar, N.L., Gilchrist, D.S., Reilly, J., Ierna, M., Fraser, A.R., Stolarski, B., et al. (2011). MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl. Acad. Sci. USA 108, 11193–11198.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, U., Hasemeier, B., Romermann, D., Muller, M., Langer, F., and Kreipe, H. (2007). Epigenetic inactivation of microRNA genes in mammary carcinoma. Verh. Dtsch. Ges. Pathol. 91, 214–220.

    PubMed  CAS  Google Scholar 

  • Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Li, D., Wang, Q., Liu, C., Duan, H., Zeng, X., Zhang, B., Li, X., Zhao, J., Tang, S., Li, Z., et al. (2012). Aberrant expression of miR-638 contributes to benzo(a) pyrene-induced human cell transformation. Toxicol. Sci. 125, 382–391.

    Article  PubMed  CAS  Google Scholar 

  • Lian, H., Wang, L., and Zhang, J. (2012). Increased risk of breast cancer associated with CC genotype of Has-miR-146a Rs29 10164 polymorphism in Europeans. PLoS One 7, e31615.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Lu, C.L., Cui, L.P., Hu, Y.L., Yu, Q., Jiang, Y., Ma, T., Jiao, D.K., Wang, D., and Jia, C.Y. (2012). MicroRNA-146a modulates TGF-beta1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch. Dermatol. Res. 304, 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Lossner, C., Meier, J., Warnken, U., Rogers, M.A., Lichter, P., Pscherer, A., and Schnolzer, M. (2011). Quantitative proteomics identify novel miR-155 target proteins. PLoS One 6, e22146.

    Article  PubMed  Google Scholar 

  • Majid, S., Saini, S., Dar, A.A., Hirata, H., Shahryari, V., Tanaka, Y., Yamamura, S., Ueno, K., Zaman, M.S., Singh, K., et al. (2011). MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res. 71, 2611–2621.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Nunez, R.T., Louafi, F., Friedmann, P.S., and Sanchez-Elsner, T. (2009). MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DCspecific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J. Biol. Chem. 284, 16334–16342.

    Article  PubMed  CAS  Google Scholar 

  • Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P.A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L.M., Ding, W., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Moskwa, P., Buffa, F.M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R.J., Beech, J., Kulshrestha, R., Abdelmohsen, K., Weinstock, D.M., et al. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol. Cell 41, 210–220.

    Article  PubMed  CAS  Google Scholar 

  • Murchison, E.P., and Hannon, G.J. (2004). miRNAs on the move; miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Nakasa, T., Shibuya, H., Nagata, Y., Niimoto, T., and Ochi, M. (2011). The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 63, 1582–1590.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E., and Mourelatos, Z. (2003). The microRNA world: small is mighty. Trends Biochem. Sci. 28, 534–540.

    Article  PubMed  CAS  Google Scholar 

  • Nicoloso, M.S., Sun, H., Spizzo, R., Kim, H., Wickramasinghe, P., Shimizu, M., Wojcik, S.E., Ferdin, J., Kunej, T., Xiao, L., et al. (2010). Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 70, 2789–2798.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., Sato, K., and Wu, W. (2011). The BRCA1 ubiquitin ligase and homologous recombination repair. FEBS Lett. 585, 2836–2844.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, C., Speed, W.C., Paranjape, T., Keane, K., Blitzblau, R., Hollestelle, A., Safavi, K., van den Ouweland, A., Zelterman, D., Slack, F.J., et al. (2011). Rare BRCA1 haplotypes including 3’UTR SNPs associated with breast cancer risk. Cell Cycle 10, 90–99.

    Article  PubMed  CAS  Google Scholar 

  • Pongsavee, M., Yamkamon, V., Dakeng, S., O-charoenrat, P., Smith, D.R., Saunders, G.F., and Patmasiriwat, P. (2009). The BRCA1 3′-UTR: 5711+421T/T_5711+1286T/T genotype is a possible breast and ovarian cancer risk factor. Genet. Test Mol. Biomarkers 113, 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Pullamsetti, S.S., Doebele, C., Fischer, A., Savai, R., Kojonazarov, B., Dahal, B.K., Ghofrani, H.A., Weissmann, N., Grimminger, F., Bonauer, A., et al. (2012). Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 185, 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Puppe, J., Drost, R., Liu, X., Joosse, S.A., Evers, B., Cornelissen-Steijger, P., Nederlof, P., Yu, Q., Jonkers, J., van Lohuizen, M., et al. (2009). BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to polycomb repressive complex 2-inhibitor 3-deazaneplanocin A. Breast Cancer Res. 11, R63.

    Article  PubMed  Google Scholar 

  • Ramus, S.J., and Gayther, S.A. (2009). The contribution of BRCA1 and BRCA2 to ovarian cancer. Mol. Oncol. 3, 138–150.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen, S., Grocock, R.J., Das, P.P., Miska, E.A., et al. (2007). Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611.

    Article  PubMed  CAS  Google Scholar 

  • Sarasin-Filipowicz, M., Krol, J., Markiewicz, I., Heim, M.H., and Filipowicz, W. (2009). Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat. Med. 15, 31–33.

    Article  PubMed  CAS  Google Scholar 

  • Scully, R., Anderson, S.F., Chao, D.M., Wei, W., Ye, L., Young, R.A., Livingston, D.M., and Parvin, J.D. (1997). BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 94, 5605–5610.

    Article  PubMed  CAS  Google Scholar 

  • Segura, M.F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., Zakrzewski, J., Blochin, E., Rose, A., Bogunovic, D., et al. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl. Acad. Sci. USA 106, 1814–1819.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., Ambrosone, C.B., DiCioccio, R.A., Odunsi, K., Lele, S.B., and Zhao, H. (2008). A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29, 1963–1966.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., Ambrosone, C.B., and Zhao, H. (2009). Novel genetic variants in microRNA genes and familial breast cancer. Int. J. Cancer 124, 1178–1182.

    Article  PubMed  CAS  Google Scholar 

  • Shukla, V., Coumoul, X., Lahusen, T., Wang, R.H., Xu, X., Vassilopoulos, A., Xiao, C., Lee, M.H., Man, Y.G., Ouchi, M., et al. (2010). BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res. 20, 1201–1215.

    Article  PubMed  CAS  Google Scholar 

  • Simon, J.A., and Lange, C.A. (2008). Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram, K., Zhang, H., Zeng, Y.X., Houvras, Y., Peng, Y., Wu, G.S., Licht, J.D., Weber, B.L., and El-Deiry, W.S. (1997). Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature 389, 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Stittrich, A.B., Haftmann, C., Sgouroudis, E., Kuhl, A.A., Hegazy, A.N., Panse, I., Riedel, R., Flossdorf, M., Dong, J., Fuhrmann, F., et al. (2010). The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat. Immunol. 11, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature 460, 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Tanic, M., Zajac, M., Gomez-Lopez, G., Benitez, J., and Martinez-Delgado, B. (2011). Integration of BRCA1-mediated miRNA and mRNA profiles reveals microRNA regulation of TRAF2 and NFkappaB pathway. Breast Cancer Res. Treat. s10549-011-1905-4.

  • Tavazoie, S.F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P.D., Gerald, W.L., and Massague, J. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Thai, T.H., Calado, D.P., Casola, S., Ansel, K.M., Xiao, C., Xue, Y., Murphy, A., Frendewey, D., Valenzuela, D., Kutok, J.L., et al. (2007). Regulation of the germinal center response by microRNA-155. Science 316, 604–608.

    Article  PubMed  CAS  Google Scholar 

  • Tili, E., Croce, C.M., and Michaille, J.J. (2009). miR-155: on the crosstalk between inflammation and cancer. Int. Rev. Immunol. 28, 264–284.

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta, T., Kozaki, K., Uesugi, A., Furuta, M., Hirasawa, A., Imoto, I., Susumu, N., Aoki, D., and Inazawa, J. (2011). miR-152 is a tumor suppressor microRNA that is silenced by DNA hyper methylation in endometrial cancer. Cancer Res. 71, 6450–6462.

    Article  PubMed  CAS  Google Scholar 

  • Turcatel, G., Rubin, N., El-Hashash, A., and Warburton, D. (2012). MIR-99a and MIR-99b modulate TGF-beta induced epithelial to mesenchymal plasticity in normal murine mammary gland cells. PLoS One 7, e31032.

    Article  PubMed  CAS  Google Scholar 

  • Turner, M., and Vigorito, E. (2008). Regulation of B- and T-cell differentiation by a single microRNA. Biochem. Soc. Trans. 36, 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Zhang, H., Kajino, K., and Greene, M.I. (1998). BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene 17, 1939–1948.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Huang, J., and Hu, Z. (2012). RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol. Cell. Proteomics 11, M111. 011932.

    PubMed  Google Scholar 

  • Wu, H., Zhu, S., and Mo, Y.Y. (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 19, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, B., Zhu, E.D., Li, N., Lu, D.S., Li, W., Li, B.S., Zhao, Y.L., Mao, X.H., Guo, G., Yu, P.W., et al. (2012). Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol. Rep. 27, 559–566.

    PubMed  CAS  Google Scholar 

  • Xu, B., Wang, N., Wang, X., Tong, N., Shao, N., Tao, J., Li, P., Niu, X., Feng, N., Zhang, L., et al. (2011). MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate 72, 1171–1178.

    Article  PubMed  Google Scholar 

  • Yang, J., Cao, Y., Sun, J., and Zhang, Y. (2010). Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol. 27, 1114–1118.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X., Wu, L.C., Bowcock, A.M., Aronheim, A., and Baer, R. (1998). The C-terminal (BRCT). domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273, 25388–25392.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Wang, C., Wang, M., Li, Z., Casimiro, M.C., Liu, M., Wu, K., Whittle, J., Ju, X., Hyslop, T., et al. (2008). A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J. Cell Biol. 182, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J.L., Rao, D.S., Boldin, M.P., Taganov, K.D., O’Connell, R.M., and Baltimore, D. (2011). NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl. Acad. Sci. USA 108, 9184–9189.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.Y., Pfuhl, T., Motsch, N., Barth, S., Nicholls, J., Grasser, F., and Meister, G. (2009). Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J. Virol. 83, 3333–3341.

    Article  PubMed  CAS  Google Scholar 

  • Zilahi, E., Tarr, T., Papp, G., Griger, Z., Sipka, S., and Zeher, M. (2012). Increased microRNA-146a/b, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjogren’s syndrome. Immunol. Lett. 141, 165–168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam K. Sharan.

About this article

Cite this article

Chang, S., Sharan, S.K. BRCA1 and MicroRNAs: Emerging networks and potential therapeutic targets. Mol Cells 34, 425–432 (2012). https://doi.org/10.1007/s10059-012-0118-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0118-y

Keywords

Navigation