Skip to main content
Log in

Genome-wide screen of human bromodomain-containing proteins identifies Cecr2 as a novel DNA damage response protein

  • Published:
Molecules and Cells

Abstract

The formation of γ-H2AX foci after DNA double strand breaks (DSBs) is crucial for the cellular response to this lethal DNA damage. We previously have shown that BRG1, a chromatin remodeling enzyme, facilitates DSB repair by stimulating γ-H2AX formation, and this function of BRG1 requires the binding of BRGI to acetylated histone H3 on γ-H2AX-containing nucleosomes using its bromodomain (BRD), a protein module that specifically recognizes acetyl-Lys moieties. We also have shown that the BRD of BRG1, when ectopically expressed in cells, functions as a dominant negative inhibitor of the BRG1 activity to stimulate γ-H2AX and DSB repair. Here, we found that BRDs from a select group of proteins have no such activity, suggesting that the γ-H2AX inhibition activity of BRG1 BRD is specific. This finding led us to search for more BRDs that exhibit γ-H2AX inhibition activity in the hope of finding additional BRD-containing proteins involved in DNA damage responses. We screened a total of 52 individual BRDs present in 38 human BRD-containing proteins, comprising 93% of all human BRDs. We identified the BRD of cat eye syndrome chromosome region candidate 2 (Cecr2), which recently was shown to form a novel chromatin remodeling complex with unknown cellular functions, as having a strong γ-H2AX inhibition activity. This activity of Cecr2 BRD is specific because it depends on the chromatin binding affinity of Cecr2 BRD. Small interfering RNA knockdown experiments showed that Cecr2 is important for γ-H2AX formation and DSB repair. Therefore, our genomewide screen identifies Cecr2 as a novel DNA damage response protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banting, G.S., Barak, O., Ames, T.M., Burnham, A.C., Kardel, M.D., Cooch, N.S., Davidson, C.E., Godbout, R., McDermid, H.E., and Shiekhattar, R. (2005). CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum. Mol. Genet. 14, 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Bao, Y., and Shen, X. (2007). Chromatin remodeling in DNA double-strand break repair. Curr. Opin. Genet. Dev. 17, 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Bienz, M. (2006). The PHD finger, a nuclear protein-interaction domain. Trends Biochem. Sci. 31, 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, W.M., Redon, C.E., Dickey, J.S., Nakamura, A.J., Sedelnikova, O.A., Solier, S., and Pommier, Y. (2008). GammaH2AX and cancer. Nat. Rev. Cancer 8, 957–967.

    Article  PubMed  CAS  Google Scholar 

  • Chao, C., Wu, Z., Mazur, S.J., Borges, H., Rossi, M., Lin, T., Wang, J.Y., Anderson, C.W., Appella, E., and Xu, Y. (2006). Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol. Cell. Biol. 26, 6859–6869.

    Article  PubMed  CAS  Google Scholar 

  • Ciccia, A., and Elledge, S.J. (2010). The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204.

    Article  PubMed  CAS  Google Scholar 

  • Das, C., Lucia, M.S., Hansen, K.C., and Tyler, J.K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459, 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, C.E., Kooistra, M.K., Fairbridge, N.A., Pisio, A.C., and Mc-Dermid, H.E. (2011). Role of chromatin remodeling gene Cecr2 in neurulation and inner ear development. Dev. Dyn. 240, 372–383.

    Article  PubMed  CAS  Google Scholar 

  • Fairbridge, N.A., Dawe, C.E., Niri, F.H., Kooistra, M.K., King-Jones, K., and McDermid, H.E. (2010). Cecr2 mutations causing exencephaly trigger misregulation of mesenchymal/ectodermal transcription factors. Birth Defects Res. A Clin. Mol. Teratol. 88, 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Footz, T.K., Brinkman-Mills, P., Banting, G.S., Maier, S.A., Riazi, M.A., Bridgland, L., Hu, S., Birren, B., Minoshima, S., Shimizu, N., et al. (2001). Analysis of the cat eye syndrome critical region in humans and the region of conserved synteny in mice: a search for candidate genes at or near the human chromosome 22 pericentromere. Genome Res. 11, 1053–1070.

    Article  PubMed  CAS  Google Scholar 

  • Huyen, Y., Zgheib, O., Ditullio, R.A., Jr., Gorgoulis, V.G., Zacharatos, P., Petty, T.J., Sheston, E.A., Mellert, H.S., Stavridi, E.S., and Halazonetis, T.D. (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, S.P., and Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461, 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.S., Park, J.H., Kim, S.J., Kwon, S.J., and Kwon, J. (2010). A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J. 29, 1434–1445.

    Article  PubMed  CAS  Google Scholar 

  • Lukas, J., Lukas, C., and Bartek, J. (2011). More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13, 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  • Martin, C., and Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849.

    Article  PubMed  CAS  Google Scholar 

  • Mujtaba, S., Zeng, L., and Zhou, M.M. (2007). Structure and acetyllysine recognition of the bromodomain. Oncogene 26, 5521–5527.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H., Park, E.J., Lee, H.S., Kim, S.J., Hur, S.K., Imbalzano, A.N., and Kwon, J. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J. 25, 3986–3997.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H., Park, E.J., Hur, S.K., Kim, S., and Kwon, J. (2009). Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst) 8, 29–39.

    Article  CAS  Google Scholar 

  • Sanchez, R., and Zhou, M.M. (2009). The role of human bromodomains in chromatin biology and gene transcription. Curr. Opin. Drug Discov. Devel. 12, 659–665.

    PubMed  CAS  Google Scholar 

  • Shen, W., Xu, C., Huang, W., Zhang, J., Carlson, J.E., Tu, X., Wu, J., and Shi, Y. (2007). Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry 46, 2100–2110.

    Article  PubMed  CAS  Google Scholar 

  • Singh, M., Popowicz, G.M., Krajewski, M., and Holak, T.A. (2007). Structural ramification for acetyl-lysine recognition by the bromodomain of human BRG1 protein, a central ATPase of the SWI/SNF remodeling complex. Chembiochem 8, 1308–1316.

    Article  PubMed  CAS  Google Scholar 

  • Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D., and Patel, D.J. (2007). How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, P.J., Norton, K.A., Niri, F.H., Dawe, C.E., and McDermid, H.E. (2012). CECR2 is involved in spermatogenesis and forms a complex with SNF2H in the testis. J. Mol. Biol. 415, 793–806.

    Article  PubMed  CAS  Google Scholar 

  • Tjeertes, J.V., Miller, K.M., and Jackson, S.P. (2009). Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28, 1878–1889.

    Article  PubMed  CAS  Google Scholar 

  • van Attikum, H., and Gasser, S.M. (2009). Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol. 19, 207–217.

    Article  PubMed  Google Scholar 

  • Zhang, Q., Chakravarty, S., Ghersi, D., Zeng, L., Plotnikov, A.N., Sanchez, R., and Zhou, M.M. (2010). Biochemical profiling of histone binding selectivity of the yeast bromodomain family. PLoS One 5, e8903.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongbum Kwon.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Lee, SK., Park, EJ., Lee, HS. et al. Genome-wide screen of human bromodomain-containing proteins identifies Cecr2 as a novel DNA damage response protein. Mol Cells 34, 85–91 (2012). https://doi.org/10.1007/s10059-012-0112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0112-4

Keywords

Navigation