Skip to main content
Log in

Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci

  • Research Article
  • Published:
Molecules and Cells

Abstract

Circadian clock genes are regulated by a transcriptional-translational feedback loop. In Arabidopsis, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSO-CIATED 1 (CCA1) transcripts are highly expressed in the morning. Translated LHY and CCA1 proteins repress the expression of TIMING OF CAB EXPRESSION 1 (TOC1), which peaks in the evening. TOC1 protein induces expression of LHY and CCA1, forming a negative feedback loop which is believed to constitute the oscillatory mechanism of the clock. The rhythmic oscillation of mouse clock genes mPERIOD 1 (mPER1) and mPER2 has been correlated with regular alteration of chromatin structure through histone acetylation/deacetylation. However, little is known about the relationship between the transcriptional activity of Arabidopsis clock genes and their chromatin status. Here, we report that histone H3 acetylation (H3Ac) and H3 lysine 4 tri-methylation (H3K4me3) levels at LHY, CCA1, and TOC1 are positively correlated with the rhythmic transcript levels of these genes, whereas H3K36me2 level shows a negative correlation. Thus, our study suggests rhythmic transcription of Arabidopsis clock genes might be regulated by rhythmic histone modification, and it provides a platform for future identification of clock-controlling histone modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabadí, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Más, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883.

    Article  PubMed  Google Scholar 

  • Belden, W.J., Loros, J.J., and Dunlap, J.C. (2007). Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. Cell 25, 587–600.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S.A., Ripperger, J., Kadener, S., Fleury-Olela, F., Vilbois, F., Rosbash, M., and Schibler, U. (2005). PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693–696.

    Article  PubMed  CAS  Google Scholar 

  • Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Charron, J.B., He, H., Elling, A.A., and Deng, X.W. (2009). Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21, 3732–3748.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.J., and Tian, L. (2007). Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta 1769, 295–307.

    Article  PubMed  CAS  Google Scholar 

  • Cho, J.-N., Ryu, J.-Y., Jeong, Y.-M., Park, J., Song, J.-J., Amasino, R.M., Noh, B., and Noh, Y.-S. (2012). Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell 22, 736–748.

    Article  PubMed  CAS  Google Scholar 

  • Clapier, C.R., and Cairns, B.R. (2009). The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304.

    Article  PubMed  CAS  Google Scholar 

  • Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A., and Harmer, S.L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130.

    Article  PubMed  Google Scholar 

  • Crosio, C., Cermakian, N., Allis, C.D., and Sassone-Corsi, P. (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 3, 1241–1247.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, A.N., Salathia, N., Hall, A., Kevei, E., Toth, R., Nagy, F., Hibberd, J.M., Millar, A.J., and Webb, A.A. (2005). Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309, 630–633.

    Article  PubMed  CAS  Google Scholar 

  • Doi, M., Hirayama, J., and Sassone-Corsi, P. (2006). Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508.

    Article  PubMed  CAS  Google Scholar 

  • Dowson-Day, M.J., and Millar, A.J. (1999). Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, J.C. (1990). Closely watched clocks: molecular analysis of circadian rhythms in Neurospora and Drosophila. Trends Genet. 6, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Etchegaray, J.P., Lee, C., Wade, P.A., and Reppert, S.M. (2003). Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Etchegaray, J.P., Yang, X., DeBruyne, J.P., Peters, A.H., Weaver, D.R., Jenuwein, T., and Reppert, S.M. (2006). The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209–21215.

    Article  PubMed  CAS  Google Scholar 

  • Han, S.K., Song, J.D., Noh, Y.S., and Noh, B. (2007). Role of plant CBP/p300-like genes in the regulation of flowering time. Plant J. 49, 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Harmer, S.L. (2009). The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357–377.

    Article  PubMed  CAS  Google Scholar 

  • Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.-S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, J., Sahar, S., Grimaldi, B., Tamaru, T., Takamatsu, K., Nakahata, Y., and Sassone-Corsi, P. (2007). CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086–1090.

    Article  PubMed  CAS  Google Scholar 

  • Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. Integr. Plant Biol. 50, 875–885.

    Article  CAS  Google Scholar 

  • Imaizumi, T., and Kay, S.A. (2006). Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550–558.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T., and Buratowski, S. (2009). Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137, 259–272.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., Lee, J., Eshed-Williams, L., Zilberman, D., and Sung, Z.R. (2012). EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLoS Genet. 3, e1002512.

    Article  Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Landry, J., Sutton, A., Hesman, T., Min, J., Xu, R.M., Johnston, M., and Sternglanz, R. (2003). Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 5972–5978.

    Article  PubMed  CAS  Google Scholar 

  • Latham, J.A., and Dent, S.Y.R. (2007). Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14, 1017–1024.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.S., Smith, E., and Shilatifard, A. (2010). The language of histone crosstalk. Cell 142, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., Carey, M., and Workman, J.L. (2007). The role of chromatin during transcription. Cell 128, 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Locke, J.C., Kozma-Bognar, L., Gould, P.D., Feher, B., Kevei, E., Nagy, F., Turner, M.S., Hall, A., and Millar, A.J. (2006). Experimental validation of a predicted feedback loop in the multioscillator clock of Arabidopsis thaliana. Mol. Syst. Biol. 2, 59

    Article  PubMed  Google Scholar 

  • Lorincz, M.C., Dickerson, D.R., Schmitt, M., and Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol. 11, 1068–1075.

    Article  PubMed  CAS  Google Scholar 

  • Masri, S., and Sassone-Corsi, P. (2010). Plasticity and specificity of the circadian epigenome. Nat. Neurosci. 13, 1324–1329.

    Article  PubMed  CAS  Google Scholar 

  • McClung, C.R., and Gutiérrez, R.A. (2010). Network news: prime time for systems biology of the plant circadian clock. Curr. Opin. Genet. Dev. 20, 588–598.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.Y. (1997). Circadian rhythms: basic neurobiology and clinical applications. Annu. Rev. Med. 48, 253–266.

    Article  PubMed  CAS  Google Scholar 

  • Naruse, Y., Oh-hashi, K., Iijima, N., Naruse, M., Yoshioka, H., and Tanaka, M. (2004). Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24, 6278–6287.

    Article  PubMed  CAS  Google Scholar 

  • Niwa, Y., Ito, S., Nakamichi, N., Mizoguchi, T., Niinuma, K., Yamashino, T., and Mizuno, T. (2007). Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant Cell Physiol. 48, 925–937.

    Article  PubMed  CAS  Google Scholar 

  • Okitsu, C.Y., and Hsieh, C.-L. (2007). DNA methylation dictates histone H3K4 methylation. Mol. Cell. Biol. 27, 2746–2757.

    Article  PubMed  CAS  Google Scholar 

  • Perales, M., and Más, P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19, 2111–2123.

    Article  PubMed  CAS  Google Scholar 

  • Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E., et al. (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Pruneda-Paz, J.L., Breton, G., Para, A., and Kay, S.A. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481–1485.

    Article  PubMed  CAS  Google Scholar 

  • Ripperger, J.A., and Schibler, U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Kobayashi, A., Saze, H., and Kakutani, T. (2012). RNAiindependent de novo DNA methylation revealed in Arabidopsis mutants of chromatin remodeling gene DDM1. Plant J. 70, 750–758.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I.A., and Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  • Song, H.-R., and Noh, Y.-S. (2007). Plants measure the time. J. Plant Biol. 50, 257–265.

    Article  CAS  Google Scholar 

  • Strahl, B.D., Grant, P.A., Briggs, S.D., Sun, Z.W., Bone, J.R., Caldwell, J.A., Mollah, S., Cook, R.G., Shabanowitz, J., Hunt, D.F., et al. (2002). Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  • Tan, M., Luo, H., Lee, S., Jin, F., Yang, J.S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N., et al. (2011). Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028.

    Article  PubMed  CAS  Google Scholar 

  • To, T.K., Kim, J.M., Matsui, A., Kurihara, Y., Morosawa, T., Ishida, J., Tanaka, M., Endo, T., Kakutani, T., Toyoda, T., et al. (2011). Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet. 4, e1002055.

    Article  Google Scholar 

  • Vermeulen, M., Mulder, K.W., Denissov, S., Pijnappel, W.W., van Schaik, F.M., Varier, R.A., Baltissen, M.P., Stunnenberg, H.G., Mann, M., and Timmers, H.T. (2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Wenden, B., Kozma-Bognar, L., Edwards, K.D., Hall, A.J., Locke, J.C., and Millar, A.J. (2011). Light inputs shape the Arabidopsis circadian system. Plant J. 66, 480–491.

    Article  PubMed  CAS  Google Scholar 

  • Yamashino, T., Ito, S., Niwa, Y., Kunihiro, A., Nakamichi, N., and Mizuno, T. (2008). Involvement of Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene expression in the presence of environmental time cues. Plant Cell Physiol. 49, 1839–1850.

    Article  PubMed  CAS  Google Scholar 

  • Yerushalmi, S., Yakir, E., and Green, R.M. (2011). Circadian clocks and adaptation in Arabidopsis. Mol. Ecol. 20, 1155–1165.

    Article  PubMed  Google Scholar 

  • Zhang, E.E., and Kay, S.A. (2010). Clocks not winding down: unraveling circadian networks. Nat. Rev. Mol. Cell Biol. 11, 764–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoo-Sun Noh.

About this article

Cite this article

Song, HR., Noh, YS. Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci. Mol Cells 34, 279–287 (2012). https://doi.org/10.1007/s10059-012-0103-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0103-5

Keywords

Navigation