Skip to main content
Log in

Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure

  • Research Article
  • Published:
Molecules and Cells

Abstract

Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium- and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA- and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin- and calcium-binding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G.J., Kwak, J.M., Chu, S.P., Llopis, J., Tsien, R.Y., Harper, J.F., and Schroeder, J.I. (1999). Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J. 19, 735–747.

    Article  PubMed  CAS  Google Scholar 

  • Ascencio-Ibanez, J.T., Sozzani, R., Lee, T.J., Chu, T.M., Wolfinger, R.D., Cella, R., and Hanley-Bowdoin, L. (2008). Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 148, 436–454.

    Article  PubMed  CAS  Google Scholar 

  • Bazile, F., Pascal, A., Arnal, I., Le Clainche, C., Chesnel, F., and Kubiak, J.Z. (2009). Complex relationship between TCTP, micro-tubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30, 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz, O., Jost, R., Pollmann, S., and Masle, J. (2008). Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20, 3430–3447.

    Article  PubMed  CAS  Google Scholar 

  • Blatt, M.R. (2000). Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16, 221–241.

    Article  PubMed  CAS  Google Scholar 

  • Bommer, U.A., and Thiele, B.J. (2004). The translationally controlled tumour protein (TCTP). Int. J. Biochem. Cell Biol. 36, 379–385.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, C., Perret, E., Dumont, X., Picard, A., Caput, D., and Lenaers, G. (2000). Identification and transcription control of fission yeast genes repressed by an ammonium starvation growth arrest. Yeast 16, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Brioudes, F., Thierry, A.M., Chambrier, P., Mollereau, B., and Bendahmane, M. (2010). Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc. Natl. Acad. Sci. USA 107, 16384–16389.

    Article  PubMed  CAS  Google Scholar 

  • Cans, C., Passer, B.J., Shalak, V., Nancy-Portebois, V., Crible, V., Amzallag, N., Allanic, D., Tufino, R., Argentini, M., Moras, D., et al. (2003). Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl. Acad. Sci. USA 100, 13892–13897.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S.H., Wu, P.S., Chou, C.H., Yan, Y.T., Liu, H., Weng, S.Y., and Yang-Yen, H.F. (2007). A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue-or cell type-specific manner. Mol. Biol. Cell 18, 2525–2532.

    Article  PubMed  CAS  Google Scholar 

  • Chitpatima, S.T., Makrides, S., Bandyopadhyay, R., and Brawerman, G. (1988). Nucleotide sequence of a major messenger RNA for a 21 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic Acids Res. 16, 2350.

    Article  PubMed  CAS  Google Scholar 

  • Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  • Desai, A., and Mitchison, T.J. (1997). Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117.

    Article  PubMed  CAS  Google Scholar 

  • Ermolayev, V., Weschke, W., and Manteuffel, R. (2003). Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J. Exp. Bot. 54, 2745–2756.

    Article  PubMed  CAS  Google Scholar 

  • Fabro, G., Di Rienzo, J.A., Voigt, C.A., Savchenko, T., Dehesh, K., Somerville, S., and Alvarez, M.E. (2008). Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol. 146, 1421–1439.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y., Liu, D., Yao, H., and Wang, J. (2007). Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Arch. Biochem. Biophys. 467, 48–57.

    Article  PubMed  CAS  Google Scholar 

  • Gachet, Y., Tournier, S., Lee, M., Lazaris-Karatzas, A., Poulton, T., and Bommer, U.A. (1999). The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell Sci. 112, 1257–1271.

    PubMed  CAS  Google Scholar 

  • Galatis, B., and Apostolakos, P. (2004). The role of the cytoskeletn in the morphogenesis and function of stomatal complexes. New Phytol. 161, 613–639.

    Article  Google Scholar 

  • Gnanasekar, M., Dakshinamoorthy, G., and Ramaswamy, K. (2009). Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem. Biophys. Res. Commun. 386, 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Goh, C.-H., Schreiber, U., and Hedrich, R. (1999). New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli. Plant Cell Environ. 22, 1057–1070.

    Article  CAS  Google Scholar 

  • Gross, B., Gaestel, M., Bohm, H., and Bielka, H. (1989). cDNA sequence coding for a translationally controlled human tumor protein. Nucleic Acids Res. 17, 8367.

    Article  PubMed  CAS  Google Scholar 

  • Heald, R., and Nogales, E. (2002). Microtubule dynamics. J. Cell Sci. 115, 3–4.

    PubMed  CAS  Google Scholar 

  • Hetherington, A.M., and Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change. Nature 424, 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Hinojosa-Moya, J., Xoconostle-Cazares, B., Piedra-Ibarra, E., Mendez-Tenorio, A., Lucas, W.J., and Ruiz-Medrano, R. (2008). Phylogenetic and structural analysis of translationally controlled tumor proteins. J. Mol. Evol. 66, 472–483.

    Article  PubMed  CAS  Google Scholar 

  • Howard, J., and Hyman, A.A. (2003). Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, Y.C., Chern, J.J., Cai, Y., Liu, M., and Choi, K.W. (2007). Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445, 785–788.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jiang, C.J., Nakajima, N., and Kondo, N. (1996). Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. Plant Cell Physiol. 37, 697–701.

    Article  CAS  Google Scholar 

  • Johansson, F., Sommarin, M., and Larsson, C. (1993). Fusicoccin activates the plasma membrane H+-ATPase by a mechanism involving the C-terminal Inhibitory domain. Plant Cell 5, 321–327.

    PubMed  CAS  Google Scholar 

  • Jones, A.M., Thomas, V., Bennett, M.H., Mansfield, J., and Grant, M. (2006). Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol. 142, 1603–1620.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.Y., Choi, H.I., Im, M.Y., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343–357.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M., Jung, Y., Lee, K., and Kim, C. (2000). Identification of the calcium binding sites in translationally controlled tumor protein. Arch. Pharm. Res. 23, 633–636.

    Article  PubMed  CAS  Google Scholar 

  • Lahav, M., Abu-Abied, M., Belausov, E., Schwartz, A., and Sadot, E. (2004). Microtubules of guard cells are light sensitive. Plant Cell Physiol. 45, 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Zhang, D., and Fujise, K. (2001). Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276, 47542–47549.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, S.M., Rafnar, T., Langdon, J., and Lichtenstein, L.M. (1995). Molecular identification of an IgE-dependent histamine-releasing factor. Science 269, 688–690.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, A.I., Moore, R.C., and Cyr, R.J. (2001). The role of microtubules in guard cell function. Plant Physiol. 125, 387–395.

    Article  PubMed  CAS  Google Scholar 

  • McAinsh, M.R., Webb, A., Taylor, J.E., and Hetherington, A.M. (1995). Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell 7, 1207–1219.

    PubMed  CAS  Google Scholar 

  • O’Brien, E.T., Salmon, E.D., and Erickson, H.P. (1997). How calcium causes microtubule depolymerization. Cell Motil. Cytoskeleton 36, 125–135.

    Article  PubMed  Google Scholar 

  • Pierce, D.R., Hayar, A., Williams, D.K., and Light, K.E. (2010). Developmental alterations in olivary climbing fiber distribution following postnatal ethanol exposure in the rat. Neuroscience 169, 1438–1448.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, J.C., Schaller, D., Ravier, F., Golaz, O., Jaccoud, S., Belet, M., Wilkins, M.R., James, R., Deshusses, J., and Hochstrasser, D. (1997). Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18, 150–155.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, I., Fahling, M., Nafz, B., Skalweit, A., and Thiele, B.J. (2007). Induction of translationally controlled tumor protein (TCTP) by transcriptional and post-transcriptional mechanisms. FEBS J. 274, 5416–5424.

    Article  PubMed  CAS  Google Scholar 

  • Shelanski, M. L., Gaskin, F., and Cantor, C.R. (1973). Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70, 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Sturzenbaum, S.R., Kille, P., and Morgan, A.J. (1998). Identification of heavy metal induced changes in the expression patterns of the translationally controlled tumour protein (TCTP) in the earthworm Lumbricus rubellus1. Biochim. Biophys. Acta 1398, 294–304.

    PubMed  CAS  Google Scholar 

  • Susini, L., Besse, S., Duflaut, D., Lespagnol, A., Beekman, C., Fiucci, G., Atkinson, A.R., Busso, D., Poussin, P., Marine, J.C., et al. (2008). TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ. 15, 1211–1220.

    Article  PubMed  CAS  Google Scholar 

  • Thaw, P., Baxter, N.J., Hounslow, A.M., Price, C., Waltho, J.P., and Craven, C.J. (2001). Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat. Struct. Biol. 8, 701–704.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, H., Berger, M., Skalweit, A., and Thiele, B.J. (2000). Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur. J. Biochem. 267, 5473–5481.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, D., Ergul, A., Bohlman, M.C., Tattersall, E.A., Tillett, R.L., Wheatley, M.D., Woolsey, R., Quilici, D.R., Joets, J., Schlauch, K., et al. (2007). Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot. 58, 1873–1892.

    Article  PubMed  CAS  Google Scholar 

  • Vonakis, B.M., Macglashan, D.W., Jr., Vilarino, N., Langdon, J.M., Scott, R.S., and MacDonald, S.M. (2008). Distinct characteristics of signal transduction events by histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)-induced priming and activation of human basophils. Blood 111, 1789–1796.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Yang, F., Xiong, Z., Yan, Y., Wang, X., Nishino, M., Mirkovic, D., Nguyen, J., Wang, H., and Yang, X.F. (2005). An Nterminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24, 4778–4788.

    Article  PubMed  CAS  Google Scholar 

  • Yu, R., Huang, R.F., Wang, X.C., and Yuan, M. (2001). Microtubule dynamics are involved in stomatal movement of Vicia faba L. Protoplasma 216, 113–118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Il Kim.

About this article

Cite this article

Kim, YM., Han, YJ., Hwang, OJ. et al. Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 33, 617–626 (2012). https://doi.org/10.1007/s10059-012-0080-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0080-8

Keywords

Navigation