Skip to main content
Log in

The role of sphingosine 1-phosphate in migration of osteoclast precursors; an application of intravital two-photon microscopy

  • Minireview
  • Published:
Molecules and Cells

Abstract

Sphingosine-1-phosphate (S1P), a biologically active lysophospholipid that is enriched in blood, controls the trafficking of osteoclast precursors between the circulation and bone marrow cavities via G protein-coupled receptors, S1PRs. While S1PR1 mediates chemoattraction toward S1P in bone marrow, where S1P concentration is low, S1PR2 mediates chemorepulsion in blood, where the S1P concentration is high. The regulation of precursor recruitment may represent a novel therapeutic strategy for controlling osteoclast-dependent bone remodeling. Through intravital multiphoton imaging of bone tissues, we reveal that the bidirectional function of S1P temporospatially regulates the migration of osteoclast precursors within intact bone tissues. Imaging technologies have enabled in situ visualization of the behaviors of several players in intact tissues. In addition, intravital microscopy has the potential to be more widely applied to functional analysis and intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H., and Deisseroth, K. (2009). Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  • Argraves, K.M., Gazzolo, P.J., Groh, E.M., Wilkerson, B.A., Matsuura, B.S., Twai, W.O., Hammad, S.M., and Argraves, W.S. (2008). High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J. Biol. Chem. 283, 25074–25081.

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh, L.L., Bonasio, R., Mazo, I.B., Halin, C., Cheng, G., van der Velden, A.W., Cariappa, A., Chase, C., Russell, P., Starnbach, M.N., et al. (2005). Activation of bone marrow-resident memory T cells by circulating antigen-bearing dendritic cells. Nat. Immunol. 6, 1029–1037.

    Article  PubMed  CAS  Google Scholar 

  • Cyster, J.G. (2005). Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159.

    Article  PubMed  CAS  Google Scholar 

  • Deal, C. (2009). Future therapeutic targets in osteoporosis. Curr. Opin. Rheumatol. 4, 380–385.

    Article  Google Scholar 

  • Golfier, S., Kondo, S., Schulze, T., Takeuchi, T., Vassileva, G., Achtman, A.H., Gräler, M.H., Abbondanzo, S.J., Wiekowski, M., Kremmer, E., et al. (2010). Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4. FASEB J. 24, 4701–4710.

    Article  PubMed  CAS  Google Scholar 

  • Gon, Y., Wood, M.R., Kiosses, W.B., Jo, E., Sanna, M.G., Chun, J., and Rosen, H. (2005). S1P3 receptro-induced reorganization of epithelial tight junctions compromises lung barrier integritiy and is potentiated by TNF. Proc. Natl. Acad. Sci. USA 102, 9270–9275.

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y.A., and Obeid, L.M. (2008). Principles of bioactive lipid signaling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9, 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Harada, S., and Rodan, G.A. (2003). Control of osteoblast function and regulation of bone mass. Nature 423, 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, M., Egen, J.G., Klauschen, F., Meier-Schellersheim, M., Saeki, Y., Vacher, J., Proia, R.L., and Germain, R.N. (2009). Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M., and Germain, R.N. (2010). Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207, 2793–2798.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, M., Saitoh, Y., Minami, T., Takeno, N., Tsuneyama, K., Miyahara, T., Nakayama, T., Sakurai, H., Takano, Y., Nishimura, M., et al. (2009). Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J. Immunol. 183, 7825–7831.

    Article  PubMed  CAS  Google Scholar 

  • Kono, M., Belyantseva, I.A., Skoura, A., Frolenkov, G.I., Starost, M.F., Dreier, J.L., Lidngton, D., Bolz, S.S., Friedman, T.B., Hla, T., et al. (2007). Deafness and stria vascularis defects in S1P2 receptor-null mice. J. Biol. Chem. 282, 10690–10696.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C.X., Hobson, J.P., Rosenfeldt, H.M., Nava, V.E., Chae, S.S., Lee, M.J., et al. (2000). Edg-1, the G-protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961.

    Article  PubMed  CAS  Google Scholar 

  • Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., Thornton, R., Shei, G.J., Card, D., Keohane, C., et al. (2002). Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Matloubian, M., Lo, C.G., Cinamon, G., Lesneski, M.J., Xu, Y., Brinkmann, V., Allende, M.L., Proia, R.L., and Cyster, J.G. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 6972, 355–360.

    Article  Google Scholar 

  • Mazo, I.B., Honczarenko, M., Leung, H., Cavanagh, L.L., Bonaisio, R., Weninger, W., Engelke, K., Xia, L., McEver, R.P., Koni, P.A., et al. (2005). Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Nofer, J.R., van der Giet, M., Tolle, M., Wolinska, I., von Wnuck Lipinski, K., Baba, H.A., Tietge, U.J., Godecke, A., Ishii, I., Kleuser, B., et al. (2004). HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 113, 569–581.

    PubMed  CAS  Google Scholar 

  • Ntziachristos, V. (2010). Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, H., Takuwa, N., Yokomizo, T., Sugimoto, N., Sakurada, S., Shigematsu, H., and Takuwa, Y. (2000). Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol. Cell. Biol. 20, 9247–9261.

    Article  PubMed  CAS  Google Scholar 

  • Osada, M., Yatomi, Y., Ohmori, T., Ikeda, H., and Ozaki, Y. (2002). Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochem. Biophys. Res. Commun. 299, 483–487.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, J., Proia, R.L., and Olivera, A. (2008). The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–763.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, H., and Goetzl, E.J. (2005). Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. Immunol. 5, 560–570.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, H., Sanna, M.G., Cahalan, S.M., and Gonzalez-Cabrera, P.J. (2007). Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol. 28, 102–107.

    Article  PubMed  CAS  Google Scholar 

  • Russell, R.G.G., Xia, Z., Dunford, J.E., Oppernann, U., Kwaasi, A., Hulley, P.A., Kavanagh, K.L., Triffitt, J.T., Lundy, M.W., Phipps, R.J., et al. (2007). Bisphosphonates. An update on mechanisms of action and how these relate to clinical efiicacy. Ann. N Y Acad. Sci. 1117, 209–257.

    CAS  Google Scholar 

  • Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., et al. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Serrier-Lanneau, V., Teixeira-Clerc, F., Li, L., Schippers, M., de Wris, W., Julien, B., Tran-Van-Nhieu, J., Manin, S., Pelstra, K., Chun J., et al. (2007). The sphingosine 1-phosphate receptor S1P2 triggers hepatic wound healing. FASEB J. 21, 2005–2013.

    Article  Google Scholar 

  • Takuwa, Y. (2002). Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochem. Biophys. Acta 1682, 112–120.

    Google Scholar 

  • Teitelbaum, S.L., and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genetic. 4, 638–649

    Article  CAS  Google Scholar 

  • Victora, G.D., Schwichkert, T.A., Fooksman, D.R., Kamphorst, A.O., Meyer-Hermann, M., Dustin, M.L., and Nussenzweig, M.C. (2010). Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605

    Article  PubMed  CAS  Google Scholar 

  • Wei, S.H., Rosen, H., Matheu, M.P., Sanna, M.G., Wang, S.K., Jo, E., Wong, C.H., Parker, I., and Cahalan, M.D. (2005). Sphingosine 1-phospate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 12, 1228–1235.

    Article  Google Scholar 

  • Yasuda, Y., Kaleta, J., and Bromme, D. (2005). The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv. Drug. Deliv. Rev. 57, 973–993.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X., Huang, Y., Collin-Osdoby, P., and Osdoby, P. (2003). Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) acrivity, and collagen transmigration. J. Bone Miner. Res. 18, 1404–1418.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Ishii.

About this article

Cite this article

Ishii, T., Shimazu, Y., Nishiyama, I. et al. The role of sphingosine 1-phosphate in migration of osteoclast precursors; an application of intravital two-photon microscopy. Mol Cells 31, 399–403 (2011). https://doi.org/10.1007/s10059-011-1010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-1010-x

Keywords

Navigation