Skip to main content
Log in

SUMO and SUMOylation in plants

  • Minireview
  • Published:
Molecules and Cells

Abstract

The traditional focus on the central dogma of molecular biology, from gene through RNA to protein, has now been replaced by the recognition of an additional mechanism. The new regulatory mechanism, post-translational modifications to proteins, can actively alter protein function or activity introducing additional levels of functional complexity by altering cellular and sub-cellular location, protein interactions and the outcome of biochemical reaction chains. Modifications by ubiquitin (Ub) and ubiquitin-like modifiers systems are conserved in all eukaryotic organisms. One of them, small ubiquitin-like modifier (SUMO) is present in plants. The SUMO mechanism includes several isoforms of proteins that are involved in reactions of sumoylation and de-sumoylation. Sumoylation affects several important processes in plants. Outstanding among those are responses to environmental stresses. These may be abiotic stresses, such as phosphate deficiency, heat, low temperature, and drought, or biotic stressses, as well including defense reactions to pathogen infection. Also, the regulations of flowering time, cell growth and development, and nitrogen assimilation have recently been added to this list. Identification of SUMO targets is material to characterize the function of sumoylation or desumoylation. Affinity purification and mass spectrometric identification have been done lately in plants. Further SUMO noncovalent binding appears to have function in other model organisms and SUMO interacting proteins in plants will be of interest to plant biologists who dissect the dynamic function of SUMO. This review will discuss results of recent insights into the role of sumoylation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., and Becker, J. (1998). Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280, 275–286.

    PubMed  CAS  Google Scholar 

  • Bernier-Villamor, V., Sampson, D.A., Matunis, M.J., and Lima, C.D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356.

    PubMed  CAS  Google Scholar 

  • Boddy, M.N., Howe, K., Etkin, L., Solomon, E., and Freemont, P. (1966). PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971–982.

    Google Scholar 

  • Bohren, K.M., Nadkarni, V., Song, J.H., Gabbay, K.H., and Owerbach, D. (2004). A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem. 279, 27233–27238.

    PubMed  CAS  Google Scholar 

  • Budhiraja, R., Hermkes, R., Müller, S., Schmidt, J., Colby, T., Panigrahi, K., Coupland, G., and Bachmair, A. (2009). substrates related to chromatin and to rna-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiol. 149, 1529–1540.

    PubMed  CAS  Google Scholar 

  • Castillo, A.G., Kong, L.J., Hanley-Bowdoin, L., and Bejarano, E.R. (2004). Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 1758–1769.

    Google Scholar 

  • Catala, R., Ouyang, J., Abreu, I.A., Hu, Y., Seo, H., Zhang, X., and Chua, N. (2007). The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952–2966.

    PubMed  CAS  Google Scholar 

  • Chen, A., Mannen, H., and Li, S.S. (1998). Characterization of mouse ubiquitin-like SMT3A and SMT3B cNDAS and gene/pseudogenes. IUBMB Life 46, 1161–1174.

    CAS  Google Scholar 

  • Cheong, M.S., Park, H.C., Hong, M.J., Lee, J., Choi, W., Jin, J.B., Bohnert, H.J., Lee, S.Y., Bressan, R.A., and Yun, D. (2009). Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes. Plant Physiol. 151, 1930–1942.

    PubMed  CAS  Google Scholar 

  • Chosed, R., Mukherjee, S., Lois, L.M., and Orth, K. (2006). Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation. Biochem. J. 398, 521–529.

    PubMed  CAS  Google Scholar 

  • Chupreta, S., Holmstrom, S., Subramanian, L., and Iniguez-Lluhi, J.A. (2005). A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol. Cell. Biol. 25, 4272–4282.

    PubMed  CAS  Google Scholar 

  • Clarke, S.M., Mur, L.A.J., Wood, J.E., and Scott, I.M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J. 38, 432–447.

    PubMed  CAS  Google Scholar 

  • Colby, T., Matthäi, A., Boeckelmann, A., and Stuible, H. (2006). SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis. Plant Physiol. 142, 318–332.

    PubMed  CAS  Google Scholar 

  • Conti, L., Price, G., O’Donnell, E., Schwessinger, B., Dominy, P., and Sadanandom, A. (2008). Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. Plant Cell 20, 2894–2908.

    PubMed  CAS  Google Scholar 

  • Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., et al. (1994). A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250.

    PubMed  CAS  Google Scholar 

  • Denuc, A., and Marfany, G. (2010). SUMO and ubiquitin paths converge. Biochem. Soc. Trans. 038, 34–39.

    CAS  Google Scholar 

  • Elrouby, N., and Coupland, G. (2010). Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc. Natl. Acad. Sci. USA 107, 17415–17420.

    PubMed  CAS  Google Scholar 

  • Garcia-Dominguez, M., March-Diaz, R., and Reyes, J.C. (2008). The PHD domain of plant pias proteins mediates sumoylation of bromodomain GTE proteins. J. Biol. Chem. 283, 21469–21477.

    PubMed  CAS  Google Scholar 

  • Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956.

    PubMed  CAS  Google Scholar 

  • Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Gene Dev. 18, 2046–2059.

    PubMed  CAS  Google Scholar 

  • Golebiowski, F., Matic, I., Tatham, M.H., Cole, C., Yin, Y., Nakamura, A., Cox, J., Barton, G. J., Mann, M., and Hay, R.T. (2009). System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2, ra24.

    PubMed  Google Scholar 

  • Grabbe, C., and Dikic, I. (2009). Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem. Rev. 109, 1481–1494.

    PubMed  CAS  Google Scholar 

  • Guo, B., Yang, S., Witty, J., and Sharrocks, A.D. (2007). Signalling pathways and the regulation of SUMO modification. Biochem. Soc. Trans. 35(Pt 6), 1414–1418.

    PubMed  CAS  Google Scholar 

  • Hanania, U., Furman-Matarasso, N., Ron, M., and Avni, A. (1999). Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19, 533–541.

    PubMed  CAS  Google Scholar 

  • Hannich, J.T., Lewis, A., Kroetz, M.B., Li, S., Heide, H., Emili, A., and Hochstrasser, M. (2005). Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102–4110.

    PubMed  CAS  Google Scholar 

  • Hecker, C., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127.

    PubMed  CAS  Google Scholar 

  • Hermkes, R., Fu, Y.-F., Nürrenberg, K., Budhiraja, R., Schmelzer, E., Elrouby, N., Dohmen, R. J., Bachmair, A., and Coupland, G. (2011). Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta 233, 63–73.

    PubMed  CAS  Google Scholar 

  • Hotson, A., and Mudgett, M.B. (2004). Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr. Opin. Plant Biol. 7, 384–390.

    PubMed  CAS  Google Scholar 

  • Huang, L., Yang, S., Zhang, S., Liu, M., Lai, J., Qi, Y., Shi, S., Wang, J., Wang, Y., Xie, Q., et al. (2009). The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J. 60, 666–678.

    PubMed  CAS  Google Scholar 

  • Ishida, T., Fujiwara, S., Miura, K., Stacey, N., Yoshimura, M., Schneider, K., Adachi, S., Minamisawa, K., Umeda, M., and Sugimoto, K. (2009). SUMO E3 Ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21, 2284–2297.

    PubMed  CAS  Google Scholar 

  • Jin, J.B., Jin, Y.H., Lee, J., Miura, K., Yoo, C.Y., Kim, W., Oosten, M.V., Hyun, Y., Somers, D.E., Lee, I., et al. (2008). The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J. 53, 530–540.

    PubMed  CAS  Google Scholar 

  • Johnson, E.S. (2004). Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.

    PubMed  CAS  Google Scholar 

  • Kerscher, O. (2007). SUMO junction-what’s your function? EMBO Rep. 8, 550–555.

    PubMed  CAS  Google Scholar 

  • Kim, J., Taylor, K.W., Hotson, A., Keegan, M., Schmelz, E.A., and Mudgett, M.B. (2008). XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell 20, 1915–1929.

    PubMed  CAS  Google Scholar 

  • Knipscheer, P., van Dijk, W.J., Olsen, J.V., Mann, M., and Sixma, T.K. (2007). Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J. 26, 2797–2807.

    PubMed  CAS  Google Scholar 

  • Knipscheer, P., Flotho, A., Klug, H., Olsen, J.V., van Dijk, W.J., Fish, A., Johnson, E.S., Mann, M., Sixma, T.K., and Pichler, A. (2008). Ubc9 Sumoylation regulates SUMO target discrimination. Mol. Cell 31, 371–382.

    PubMed  CAS  Google Scholar 

  • Kroetz, M.B., and Hochstrasser, M. (2009). Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Methods Mol. Biol. 497, 107–120.

    PubMed  CAS  Google Scholar 

  • Kurepa, J., Walker, J.M., Smalle, J., Gosink, M.M., Davis, S.J., Durham, T.L., Sung, D., and Vierstra, R.D. (2003). The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of sumo1 and -2 conjugates is increased by stress. J. Biol. Chem. 278, 6862–6872.

    PubMed  CAS  Google Scholar 

  • Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138, 882–897.

    PubMed  CAS  Google Scholar 

  • Lee, J., Nam, J., Park, H.C., Na, G., Miura, K., Jin, J.B., Yoo, C.Y., Baek, D., Kim, D.H., Jeong, J.C., et al. (2006). Salicylic acidmediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J. 49, 79–90.

    PubMed  Google Scholar 

  • Li, W., Hesabi, B., Babbo, A., Pacione, C., Liu, J., Chen, D.J., Nickoloff, J.A., and Shen, Z. (2000). Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res. 28, 1145–1153.

    PubMed  CAS  Google Scholar 

  • Lin, W., Lin, S., and Chiou, T. (2009). Molecular regulators of phosphate homeostasis in plants. J. Exp. Bot. 60, 1427–1438.

    PubMed  CAS  Google Scholar 

  • Lois, L.M., Lima, C.D., and Chua, N. (2003). Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347–1350.

    PubMed  CAS  Google Scholar 

  • Mannen, H., Tseng, H., Cho, C., and Li, S.S. (1996). Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene. Biochem. Biophys. Res. Commun. 222, 178–180.

    PubMed  CAS  Google Scholar 

  • Matunis, M.J., Coutavas, E., and Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470.

    PubMed  CAS  Google Scholar 

  • Matunis, M.J., Wu, J., and Blobel, G. (1998). SUMO-1 modification and its role in targeting the Ran GTPase-activating Protein, Ran-GAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509.

    PubMed  CAS  Google Scholar 

  • Melchior, F. (2000). SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626.

    PubMed  CAS  Google Scholar 

  • Meluh, P.B., and Koshland, D. (1995). Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807.

    PubMed  CAS  Google Scholar 

  • Merrill, J.C., Melhuish, T.A., Kagey, M.H., Yang, S., Sharrocks, A.D., and Wotton, D. (2010). A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity. PLos one 5, e8794.

    PubMed  Google Scholar 

  • Miller, M.J., Barrett-Wilt, G.A., Hua, Z., and Vierstra, R.D. (2010). Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc. Natl. Acad. Sci. USA 107, 16512–16517.

    PubMed  CAS  Google Scholar 

  • Minty, A., Dumont, X., Kaghad, M., and Caput, D. (2000). Covalent modification of p73α by SUMO-1. J. Biol. Chem. 275, 36316–36323.

    PubMed  CAS  Google Scholar 

  • Miura, K., and Hasegawa, P.M. (2010). Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol. 20, 223–232.

    PubMed  CAS  Google Scholar 

  • Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A.S., Raghothama, K.G., Baek, D., Koo, Y.D., Jin, J.B., Bressan, R.A., et al. (2005). The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl. Acad. Sci. USA 102, 7760–7765.

    PubMed  CAS  Google Scholar 

  • Miura, K., Jin, J.B., and Hasegawa, P.M. (2007a). Sumoylation, a post-translational regulatory process in plants. Curr. Opin. Plant Biol. 10, 495–502.

    PubMed  CAS  Google Scholar 

  • Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., and Hasegawa, P.M. (2007b). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403–1414.

    PubMed  CAS  Google Scholar 

  • Miura, K., Lee, J., Jin, J.B., Yoo, C.Y., Miura, T., and Hasegawa, P.M. (2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 106, 5418–5423.

    PubMed  CAS  Google Scholar 

  • Miura, K., Lee, J., Miura, T., and Hasegawa, P.M. (2010). SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol. 51, 103–113.

    PubMed  CAS  Google Scholar 

  • Murtas, G., Reeves, P.H., Fu, Y., Bancroft, I., Dean, C., and Coupland, G. (2003). A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of small ubiquitin-related modifier conjugates. Plant Cell 15, 2308–2319.

    PubMed  CAS  Google Scholar 

  • Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C.F., Chang, H.M., and Yeh, E.T. (1996). Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol. 157, 4277–4281.

    PubMed  CAS  Google Scholar 

  • Orth, K., Xu, Z., Mudgett, M.B., Bao, Z.Q., Palmer, L.E., Bliska, J.B., Mangel, W.F., Staskawicz, B., and Dixon, J.E. (2000). Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597.

    PubMed  CAS  Google Scholar 

  • Park, H.C., Kim, H., Koo, S.C., Park, H.J., Cheong, M.S., Hong, H., Baek, D., Chung, W.S., Kim, D.H., Bressan, R.A., et al. (2010). Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant Cell Environ. 33, 1923–1934.

    PubMed  CAS  Google Scholar 

  • Park, H.C., Choi, W., Park, H.J., Cheong, M., Koo, Y.D., Shin, G., Chung, W.S., Kim, W.-Y., Kim, M.G., Bressan, R., et al. (2011a). Identification and molecular properties of SUMO-binding proteins in Arabidopsis. Mol. Cells 32, 143–151.

    PubMed  CAS  Google Scholar 

  • Park, B.S., Song, J.T., and Seo, H.S. (2011b). Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat. Commun. 2, 400.

    PubMed  Google Scholar 

  • Perry, J.J.P., Tainer, J.A., and Boddy, M.N. (2008). A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201–208.

    PubMed  CAS  Google Scholar 

  • Potts, P.R., and Yu, H. (2005). Human MMS21/NSE2 is a sumo ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032.

    PubMed  CAS  Google Scholar 

  • Reed, J.M., Dervinis, C., Morse, A.M., and Davis, J.M. (2010). The SUMO conjugation pathway in Populus: genomic analysis, tissue-specific and inducible Sumoylation and in vitro de-SUMOylation. Planta 232.

  • Reeves, P.H., Murtas, G., Dash, S., and Coupland, G. (2002). early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 129, 5349–5361.

    PubMed  CAS  Google Scholar 

  • Roden, J., Eardley, L., Hotson, A., Cao, Y., and Mudgett, M.B. (2004). Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. Mol. Plant Microbe Interact. 17, 633–643.

    PubMed  CAS  Google Scholar 

  • Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258.

    PubMed  CAS  Google Scholar 

  • Saracco, S.A., Miller, M.J., Kurepa, J., and Vierstra, R.D. (2007). Genetic analysis of sumoylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol. 145, 119–134.

    PubMed  CAS  Google Scholar 

  • Seeler, J., and Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690–699.

    PubMed  CAS  Google Scholar 

  • Sekiyama, N., Ikegami, T., Yamane, T., Ikeguchi, M., Uchimura, Y., Baba, D., Ariyoshi, M., Tochio, H., Saitoh, H., and Shirakawa, M. (2008). Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J. Biol. Chem. 283, 35966–35975.

    PubMed  CAS  Google Scholar 

  • Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., Moyzis, R.K., and Chen, D.J. (1996a). Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 37, 183–186.

    PubMed  CAS  Google Scholar 

  • Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., Moyzis, R.K., and Chen, D.J. (1996b). UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271–279.

    PubMed  CAS  Google Scholar 

  • Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G., and Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378.

    PubMed  CAS  Google Scholar 

  • Song, J., Zhang, Z., Hu, W., and Chen, Y. (2005). Small ubiquitinlike modifier (SUMO) recognition of a SUMO binding motif. J. Biol. Chem. 280, 40122–40129.

    PubMed  CAS  Google Scholar 

  • Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M.P., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374.

    PubMed  CAS  Google Scholar 

  • Thangasamy, S., Guo, C.L., Chuang, M.-H., Lai, M.-H., Chen, J., and Jauh, G.-Y. (2011). Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol. 189, 869–882.

    PubMed  CAS  Google Scholar 

  • Ulrich, H.D. (2005). Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15, 525–532.

    PubMed  CAS  Google Scholar 

  • van den Burg, H.A., Kini, R.K., Schuurink, R.C., and Takken, F.L.W. (2010). Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22, 1998–2016.

    PubMed  Google Scholar 

  • Vijay-Kumar, S., Bugg, C.E., and Cook, W.J. (1987). Structure of ubiquitin refined at 1.8 194, 531–544

    CAS  Google Scholar 

  • Walden, H., Podgorski, M.S., and Schulman, B.A. (2003). Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334.

    PubMed  CAS  Google Scholar 

  • Wang, Y., and Dasso, M. (2009). Sumoylation and desumoylation at a glance. J. Cell Sci. 122, 4249–4252.

    PubMed  CAS  Google Scholar 

  • Wang, H., Makeen, K., Yan, Y., Cao, Y., Sun, S., and Xu, G. (2011). OsSIZ1 regulates the vegetative growth and reproductive development in rice. Plant Mol. Biol. Rep. 29, 411–417.

    CAS  Google Scholar 

  • Wilkinson, K.A., and Henley, J.M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 428, 133–145.

    PubMed  CAS  Google Scholar 

  • Xu, P., and Peng, J. (2006). Dissecting the ubiquitin pathway by mass spectrometry. Biochim. Biophys. Acta 1764, 1940–1947.

    PubMed  CAS  Google Scholar 

  • Xu, X.M., Rose, A., Muthuswamy, S., Jeong, S.Y., Venkatakrishnan, S., Zhao, Q., and Meier, I. (2007). Nuclear pore anchor, the Arabidopsis Homolog of Tpr/Mlp1/Mlp2/Megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19, 1537–1548.

    PubMed  CAS  Google Scholar 

  • Yang, S., and Sharrocks, A.D. (2010). The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif. Mol. Cell. Biol. 30, 2193–2205.

    PubMed  CAS  Google Scholar 

  • Yoo, C.Y., Miura, K., Jin, J.B., Lee, J., Park, H.C., Salt, D.E., Yun, D., Bressan, R.A., and Hasegawa, P.M. (2006). SIZ1 small ubiquitin-like modifier E3 Ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol. 142, 1548–1558.

    PubMed  CAS  Google Scholar 

  • Zhang, S., Qi, Y., and Yang, C. (2010). Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development. Plant Signal. Behav. 5, 1–3.

    Google Scholar 

  • Zhu, J., Zhu, S., Guzzo, C.M., Ellis, N.A., Sung, K.S., Choi, C.Y., and Matunis, M.J. (2008). Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J. Biol. Chem. 283, 29405–29415.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Jin Yun.

About this article

Cite this article

Park, H.J., Kim, WY., Park, H.C. et al. SUMO and SUMOylation in plants. Mol Cells 32, 305–316 (2011). https://doi.org/10.1007/s10059-011-0122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0122-7

Keywords

Navigation