Skip to main content
Log in

Epigenetic up-regulation of leukemia inhibitory factor (LIF) gene during the progression to breast cancer

  • Published:
Molecules and Cells

Abstract

The interleukin 6 family of cytokines including leukemia inhibitory factor (LIF) regulates the progression of several types of cancer. However, although LIF overexpression during breast cancer progression was observed in our previous report, the molecular mechanisms responsible for this deregulation remain largely unknown. Here we show that LIF expression is epigenetically up-regulated via DNA demethylation and changes in histone methylation status within its promoter region in the isogenic MCF10 model. Bisulfite sequencing revealed the CpG pairs within the promoter region are hypermethylated in normal breast epithelial cells, but extensively demethylated as breast cancer progresses. In agreement with the DNA methylation pattern, our chromatin immunoprecipitation showed that inactive epigenetic marks such as MeCP2 occupancy and histone H3-Lys9-dimethylation significantly decreased during the progression to breast cancer but an active histone mark was increased in an inverse manner. Also, the occupancy of the transcription factor Sp1, which has higher affinity for hypomethylated CpGs, increased. RNAimediated knockdown of LIF expression resulted in a significant reduction of cell growth and colony formation in breast cancer cells, suggesting the potential role of LIF-LIF receptor axis in autocrine stimulation of cancer cells. Collectively, our data suggest that the epigenetic up-regulation of the LIF gene likely play an important role in the development of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi, A., Pisarcik, D., Roberts, D., Weinstein, J., Cairns, P., and Hamilton, T.C. (2003). LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24-25, is epigenetically regulated in cancer. J. Biol. Chem. 278, 6041–6049.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, H., Banerjee, P.P., and Vasta, G.R. (2007). Differential expression of galectins in normal, benign and malignant prostate epithelial cells: Silencing of galectin-3 expression in prostate cancer by its promoter methylation. Biochem. Biophys. Res. Commun. 358, 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Ballestar, E., and Esteller, M. (2008). Epigenetic gene regulation in cancer. Adv. Genet. 61, 247–267.

    Article  PubMed  Google Scholar 

  • Baylin, S.B., and Jones, P.A. (2007). Epigenetic determinants of cancer. In Epigenetics, C.D. Allis, T. Jenuwein, and D. Reinberg, eds. (New York, USA: Cold Spring Harbor Laboratory Press), pp. 457–476.

    Google Scholar 

  • Chernov, A.V., Sounni, N.E., Remacle, A.G., and Strongin, A.Y. (2009). Epigenetic control of the invasion-promoting MT1-MMP/MMP-2/TIMP-2 axis in cancer cells. J. Biol. Chem. 284, 12727–12734.

    Article  PubMed  CAS  Google Scholar 

  • Chicoine, E., Esteve, P.O., Robledo, O., Van Themsche, C., Potworowski, E.F., and St-Pierre, Y. (2002). Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem. Biophys. Res. Commun. 297, 765–772.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S.J., Harrison, J., and Molloy, P.L. (1997). Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Comb, M., and Goodman, H.M. (1990). CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 18, 3975–3982.

    Article  PubMed  CAS  Google Scholar 

  • Crichton, M.B., Nichols, J.E., Zhao, Y., Bulun, S.E., and Simpson, E.R. (1996). Expression of transcripts of interleukin-6 and related cytokines by human breast tumors, breast cancer cells, and adipose stromal cells. Mol. Cell. Endocrinol. 118, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Demers, M., Couillard, J., Giglia-Mari, G., Magnaldo, T., and St-Pierre, Y. (2009). Increased galectin-7 gene expression in lymphoma cells is under the control of DNA methylation. Biochem. Biophys. Res. Commun. 387, 425–429.

    Article  PubMed  CAS  Google Scholar 

  • Dhingra, K., Sahin, A., Emami, K., Hortobagyi, G.N., and Estrov, Z. (1998). Expression of leukemia inhibitory factor and its receptor in breast cancer: a potential autocrine and paracrine growth regulatory mechanism. Breast Cancer Res. Treat. 48, 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, A.M., Goss, G.A., Sutherland, R.L., Hilton, D.J., Berndt, M.C., Nicola, N.A., and Begley, C.G. (1997). Expression and function of members of the cytokine receptor superfamily on breast cancer cells. Oncogene 14, 661–669.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, A.M., Grant, S.L., Goss, G.A., Clouston, D.R., Sutherland, R.L., and Begley, C.G. (1998). Oncostatin M induces the differentiation of breast cancer cells. Int. J. Cancer 75, 64–73.

    Article  PubMed  CAS  Google Scholar 

  • Estrov, Z., Samal, B., Lapushin, R., Kellokumpu-Lehtinen, P., Sahin, A.A., Kurzrock, R., Talpaz, M., and Aggarwal, B.B. (1995). Leukemia inhibitory factor binds to human breast cancer cells and stimulates their proliferation. J. Int. Cytokine Res. 15, 905–913.

    Article  CAS  Google Scholar 

  • Fuks, F., Hurd, P.J., Deplus, R., and Kouzarides, T. (2003a). The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312.

    Article  PubMed  CAS  Google Scholar 

  • Fuks, F., Hurd, P.J., Wolf, D., Nan, X.S., Bird, A.P., and Kouzarides, T. (2003b). The Methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Tunon, I., Ricote, M., Ruiz, A., Fraile, B., Paniagua, R., and Royuela, M. (2008). OSM, LIF, its receptors, and its relationship with the malignance in human breast carcinoma (in situ and in infiltrative). Cancer Invest. 26, 222–229.

    Article  PubMed  CAS  Google Scholar 

  • Graff, J.R., Herman, J.G., Myohanen, S., Baylin, S.B., and Vertino, P.M. (1997). Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J. Biol. Chem. 272, 22322–22329.

    Article  PubMed  CAS  Google Scholar 

  • Grant, S.L., Douglas, A.M., Goss, G.A., and Begley, C.G. (2001). Oncostatin M and leukemia inhibitory factor regulate the growth of normal human breast epithelial cells. Growth Factors 19, 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Pakeshan, P., Gladu, J., Slack, A., Szyf, M., and Rabbani, S.A. (2002). Regulation of DNA methylation in human breast cancer. J. Biol. Chem. 277, 41571–41579.

    Article  PubMed  CAS  Google Scholar 

  • Honda, H., Pazin, M.J., Ji, H., Wernyj, R.P., and Morin, P.J. (2006). Crucial roles of Sp1 and epigenetic modifications in the regulation of the CLDN4 promoter in ovarian cancer cells. J. Biol. Chem. 281, 21433–21444.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, D.R., Xie, Y., Edmonds, M.D., and Welch, D.R. (2009). Multiple forms of BRMS1 are differentially expressed in the MCF10 isogenic breast cancer progression model. Clin. Exp. Meta. 26, 89–96.

    Article  CAS  Google Scholar 

  • Iguchi-Ariga, S.M., and Schaffner, W. (1998). CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619.

    Article  Google Scholar 

  • Jorcyk, C.L., Holzer, R.G., and Ryan, R.E. (2006). Oncostatin M induces cell detachment and enhances the metastatic capacity of T-47D human breast carcinoma cells. Cytokine 33, 323–336.

    Article  PubMed  CAS  Google Scholar 

  • Jost, C.A., Marin, M.C., and Kaelin, W.G. Jr. (1997). p73 is a simian p53-related protein that can induce apoptosis. Nature 389, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Kamohara, H., Ogawa, M., Ishiko, T., Sakamoto, K., and Baba, H. (2007). Leukemia inhibitory factor functions as a growth factor in pancreas carcinoma cells: involvement of regulation of LIF and its receptor expression. Int. J. Oncol. 30, 977–983.

    PubMed  CAS  Google Scholar 

  • Kellokumpu-Lehtinen, P., Talpaz, M., Harris, D., Van, Q., Kurzrock, R., and Estrov, Z. (1996). Leukemia-inhibitory factor stimulates breast, kidney and prostate cancer cell proliferation by paracrine and autocrine pathways. Int. J. Cancer 66, 515–519.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Hwang, E.H., Park, H.J., Paik, Y.K., and Shim, Y.H. (2005). Methylation of CpG islands in the rat 7-dehydrocholesterol reductase promoter suppresses transcriptional activation. Mol. Cells 19, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Kudo, S. (1998). Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol. Cell. Biol. 18, 5492–5499.

    PubMed  CAS  Google Scholar 

  • Liu, J.W., Hadjokas, N., Mosley, B., Estrov, Z., Spence, M.J., and Vestal, R.E. (1998). Oncostatin M-specific receptor expression and function in regulating cell proliferation of normal and malignant mammary epithelial cells. Cytokine 10, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Mancini, D.N., Singh, S.M., Archer, T.K., and Rodenhiser, D.I. (1999). Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene 18, 4108–4119.

    Article  PubMed  CAS  Google Scholar 

  • Marella, N.V., Malyavantham, K.S., Wang, J.M., Matsui, S., Liang, P., and Berezney, R. (2009). Cytogenetic and cDNA microarray expression analysis of MCF10 human breast cancer progression cell lines. Cancer Res. 69, 5946–5953.

    Article  PubMed  CAS  Google Scholar 

  • McGough, J.M., Yang, D.F., Huang, S., Georgi, D., Hewitt, S.M., Rocken, C., Tanzer, M., Ebert, M.P.A., and Liu, K.B. (2008). DNA methylation represses IFN-gamma-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol. Cancer Res. 6, 1841–1851.

    PubMed  CAS  Google Scholar 

  • Metivier, R., Gallais, R., Tiffoche, C., Le Peron, C., Jurkowska, R.Z., Carmouche, R.P., Ibberson, D., Barath, P., Demay, F., Reid, G., et al. (2008). Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Motegi, K., Azuma, M., Tamatani, T., Ashida, Y., and Sato, M. (2005). Expression of aquaporin-5 in and fluid secretion from immortalized human salivary gland ductal cells by treatment with 5-aza-2′-deoxycytidine: a possibility for improvement of xerostomia in patients with Sjogren’s syndrome. Lab. Invest. 85, 342–353.

    Article  PubMed  CAS  Google Scholar 

  • Murayama, A., Sakura, K., Nakama, M., Yasuzawa-Tanaka, K., Fujita, E., Tateishi, Y., Wang, Y.A., Ushijima, T., Baba, T., Shibuya, K., et al. (2006). A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J. 25, 1081–1092.

    Article  PubMed  CAS  Google Scholar 

  • Na, Y.K., Lee, S.M., Hong, H.S., Kim, J.B., Park, J.Y., and Kim, D,S. (2010). Hypermethylation of growth arrest DNA-damage-inducible gene 45 in non-small cell lung cancer and its relationship with clinicopathologic features. Mol. Cells 30, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.H., Jung, Y.H., Gupra, M.K., Uhm, S.J., and Lee, H.T. (2009). H19 gene is epigenetically stable in mouse multipotent germline stem cells. Mol. Cells 27, 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani-Fujita, N., Fujita, T., Aoike, A., Osifchin, N.E., Robbins, P.D., and Sakai, T. (1993). CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8, 1063–1067.

    PubMed  CAS  Google Scholar 

  • Pakneshan, P., Szyf, M., Farias-Eisner, R., and Rabbani, S.A. (2004). Reversal of the hypomethylation status of Urokinase (uPA) promoter blocks breast cancer growth and metastasis. J. Biol. Chem. 279, 31735–31744.

    Article  PubMed  CAS  Google Scholar 

  • Park, W.S., Cho, Y.G., Kim, C.J., Song, J.H., Lee, Y.S., Kim, S.Y., Nam, S.W., Lee, S.H., Yoo, N.J., and Lee, J.Y. (2005). Hyperme- thylation of the RUNX3 gene in hepatocellular carcinoma. Exp. Mol. Med. 37, 276–281.

    PubMed  CAS  Google Scholar 

  • Park, H.Y., Jeon, Y.K., Shin, H.J., Kim, I.J., Kang, H.C., Jeong, S.J., Chung, D.H., and Lee, C.W. (2007). Differential promoter methylation may be a key molecular mechanism in regulating BubR1 expression in cancer cells. Exp. Mol. Med. 39, 195–204.

    PubMed  CAS  Google Scholar 

  • Perrais, M., Pigny, P., Buisine, M.-P., Porchet, N., Aubert, J.-P., and Van Seuningen-Lempire, I. (2001). Abberant expression of human mucin gene MUC5B in gastric carcinoma and cancer cells. J. Biol. Chem. 276, 15386–15396.

    Article  PubMed  CAS  Google Scholar 

  • Qu, Z., Fu, J., Yan, P., Hu, J., Cheng, S.-Y., and Xiao, G. (2010). Epigenetic repression of PDZ-LIM domain-containing protein 2: implications for the biology and treatment of breast cancer. J. Biol. Chem. 285, 11786–11792.

    Article  PubMed  CAS  Google Scholar 

  • Queen, M.M., Ryan, R.E., Holzer, R.G., Keller-Peck, C.R., and Jorcyk, C.L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res. 65, 8896–8904.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, D.K., Park, S.H., and Jang, Y.K. (2008). Molecular signatures associated with transformation and progression to breast cancer in the isogenic MCF10 model. Genomics 92, 419–428.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, K.D. (2005). DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610.

    Article  PubMed  CAS  Google Scholar 

  • Santner, S.J., Dawson, P.J., Tait, L., Soule, H.D., Eliason, J., Mohamed, A.N., Wolman, S.R., Heppner, G.H., and Miller, F.R. (2001). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res. Treat. 65, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Shvachko, L.P. (2009). DNA hypomethylation as Achilles’ heel of tumorigenesis: a working hypothesis. Cell Biol. Int. 33, 904–1010.

    Article  PubMed  CAS  Google Scholar 

  • Siegfried, Z., Eden, S., Mendelsohn, M., Feng, X., Tsuberi, B.Z., and Cedar, H. (1999). DNA methylation represses transcription in vivo. Nat. Genet. 22, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Suh, E.R., Ha, C.S., Rankin, E.B., Toyota, M., and Traber, P.G. (2002). DNA methylation down-regulates CDX1 gene expression in colorectal cancer cell lines. J. Biol. Chem. 277, 35795–35800.

    Article  PubMed  CAS  Google Scholar 

  • Tsujiuchi, T., Onishi, M., Sugata, E., Fujii, H., Mori, T., Honoki, K., and Fukushima, N. (2006). Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines. Biochem. Biophys. Res. Commun. 349, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Vaissiere, T., Sawan, C., and Herceg, Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. 659, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Worsham, M.J., Pals, G., Schouten, J.P., Miller, F., Tiwari, N., van Spaendonk, R., and Wolman, S.R. (2006). High-resolution mapping of molecular events associated with immortalization, transformation, and progression to breast cancer in the MCF10 model. Breast Cancer Res. Treat. 96, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., Ratajczak, J., and Ratajczak, M.Z. (2007). Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Res. 67, 2131–2140.

    Article  PubMed  CAS  Google Scholar 

  • Yu, S.E., Park, S.H., and Jang, Y.K. (2010). Epigenetic silencing of TNFSF7 (CD70) by DNA methylation during progression to breast cancer. Mol. Cells 29, 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, W.G., Srinivasan, K., Dai, Z.Y., Duan, W.R., Druhan, L.J., Ding, H.M., Yee, L., Villalona-Calero, M.A., Plass, C., and Otterson, G.A. (2003). Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol. Cell. Biol. 23, 4056–4065.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeun Kyu Jang.

About this article

Cite this article

Shin, J.E., Park, S.H. & Jang, Y.K. Epigenetic up-regulation of leukemia inhibitory factor (LIF) gene during the progression to breast cancer. Mol Cells 31, 181–189 (2011). https://doi.org/10.1007/s10059-011-0020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0020-z

Keywords

Navigation