Skip to main content
Log in

Soluble epithin/PRSS14 secreted from cancer cells contains active angiogenic potential

  • Communication
  • Published:
Molecules and Cells

Abstract

Epithin (PRSS14/matriptase/ST14), a type II membrane protein, is involved in progression of epithelial cancers and metastasis as well as in the normal epidermal barrier function. When activated, it translocates into the cell-cell contacts and sheds into media. In order to understand the specific mechanism during tumor progression, we tested the angiogenic potential of secreted form of epithin. Epithin produced from the cancer cells shed more in hypoxia and induced motility of endothelial cells. Epithin enhanced the migration and invasion of mouse and bovine endothelial cells without cell proliferation. Furthermore, soluble epithin induced endothelial differentiation in the assay of the human endothelial microvessel-like tube formation and in that of the chicken chorioallantoic membrane. The knock-down of epithin in the 427 thymoma cell line abolished the protease activity of secreted epithin fraction, reduced the invasion of endothelial cells through matrigel, and tube formation activity. Only specific antibodies abolished the migration of endothelial cell and the vessel morphogenesis, suggesting that epithin specifically functions in these systems. Therefore, we propose that the secreted epithin in the hypoxic cancer microenvironment plays a role as a proangiogenic factor, and can be modulated with specific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Affara, N.I., Andreu, P., and Coussens, L.M. (2009). Delineating protease functions during cancer development. Methods Mol. Biol. 539, 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Aimes, R.T., Zijlstra, A., Hooper, J.D., Ogbourne, S.M., Sit, M.L., Fuchs, S., Gotley, D.C., Quigley, J.P., and Antalis, T.M. (2003). Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb. Haemost. 89, 561–572.

    CAS  PubMed  Google Scholar 

  • Basel-Vanagaite, L., Attia, R., Ishida-Yamamoto, A., Rainshtein, L., Ben Amitai, D., Lurie, R., Pasmanik-Chor, M., Indelman, M., Zvulunov, A., Saban, S., et al. (2007). Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. Am. J. Hum. Genet 80, 467–477.

    Article  CAS  PubMed  Google Scholar 

  • Cho, E.G., Kim, M.G., Kim, C., Kim, S.R., Seong, I.S., Chung, C., Schwartz, R.H., and Park, D. (2001). N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J. Biol. Chem. 276, 44581–44589.

    Article  CAS  PubMed  Google Scholar 

  • Cho, E.G., Schwartz, R.H., and Kim, M.G. (2005). Shedding of membrane epithin is blocked without LDLRA4 and its protease activation site. Biochem. Biophys. Res. Commun. 327, 328–334.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967–974.

    Article  CAS  PubMed  Google Scholar 

  • Ha, C.H., and Jin, Z.G. (2009). Protein kinase D1, a new molecular player in VEGF signaling and angiogenesis. Mol. Cells 28, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Jin, X., Yagi, M., Akiyama, N., Hirosaki, T., Higashi, S., Lin, C.Y., Dickson, R.B., Kitamura, H., and Miyazaki, K. (2006). Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci. 97, 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J.Y., Dolled-Filhart, M., Ocal, I.T., Singh, B., Lin, C.Y., Dickson, R.B., Rimm, D.L., and Camp, R.L. (2003). Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of nodenegative breast cancer. Cancer Res. 63, 1101–1105.

    CAS  PubMed  Google Scholar 

  • Kim, C., Cho, Y., Kang, C.H., Kim, M.G., Lee, H., Cho, E.G., and Park, D. (2005). Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO Rep. 6, 1045–1051.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.G., Chen, C., Lyu, M.S., Cho, E.G., Park, D., Kozak, C., and Schwartz, R.H. (1999). Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49, 420–428.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.L., Dickson, R.B., and Lin, C.Y. (2000). Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J. Biol. Chem. 275, 36720–36725.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.Y., Anders, J., Johnson, M., Sang, Q.A., and Dickson, R.B. (1999). Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J. Biol. Chem. 274, 18231–18236.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.Y., Tseng, I.C., Chou, F.P., Su, S.F., Chen, Y.W., Johnson, M.D., and Dickson, R.B. (2008). Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci. 13, 621–635.

    Article  CAS  PubMed  Google Scholar 

  • List, K. (2009). Matriptase: a culprit in cancer? Future Oncol. 5, 97–104.

    Article  CAS  PubMed  Google Scholar 

  • List, K., Szabo, R., Molinolo, A., Sriuranpong, V., Redeye, V., Murdock, T., Burke, B., Nielsen, B.S., Gutkind, J.S., and Bugge, T.H. (2005). Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev. 19, 1934–1950.

    Article  CAS  PubMed  Google Scholar 

  • List, K., Bugge, T.H., and Szabo, R. (2006). Matriptase: potent proteolysis on the cell surface. Mol. Med. 12, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, M.M., and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775.

    Article  CAS  PubMed  Google Scholar 

  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 5, 55–63.

    Article  Google Scholar 

  • Netzel-Arnett, S., Hooper, J.D., Szabo, R., Madison, E.L., Quigley, J.P., Bugge, T.H., and Antalis, T.M. (2003). Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev. 22, 237–258.

    Article  CAS  PubMed  Google Scholar 

  • Oberst, M.D., Johnson, M.D., Dickson, R.B., Lin, C.Y., Singh, B., Stewart, M., Williams, A., al-Nafussi, A., Smyth, J.F., Gabra, H., et al. (2002). Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin. Cancer Res. 8, 1101–1107.

    CAS  PubMed  Google Scholar 

  • Overall, C.M., and Kleifeld, O. (2006). Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239.

    Article  CAS  PubMed  Google Scholar 

  • Park, M.T., Cha, H.J., Jeong, J.W., Kim, S.I., Chung, H.Y., Kim, N.D., Kim, O.H., and Kim, K.W. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol. Cells 9, 476–483.

    CAS  PubMed  Google Scholar 

  • Roy, R., Zhang, B., and Moses, M.A. (2006). Making the cut: protease-mediated regulation of angiogenesis. Exp. Cell Res. 312, 608–622.

    Article  CAS  PubMed  Google Scholar 

  • Saleem, M., Adhami, V.M., Zhong, W., Longley, B.J., Lin, C.Y., Dickson, R.B., Reagan-Shaw, S., Jarrard, D.F., and Mukhtar, H. (2006). A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol. Biomarkers Prev. 15, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Seiki, M., and Yana, I. (2003). Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Sci. 94, 569–574.

    Article  CAS  PubMed  Google Scholar 

  • Szabo, R., Hobson, J.P., Christoph, K., Kosa, P., List, K., and Bugge, T.H. (2009). Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development 136, 2653–2663.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, T., Shuman, M.A., and Craik, C.S. (1999). Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc. Natl. Acad. Sci. USA 96, 11054–11061.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, T., Harris, J.L., Huang, W., Yan, K.W., Coughlin, S.R., and Craik, C.S. (2000). Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275, 26333–26342.

    Article  CAS  PubMed  Google Scholar 

  • Uhland, K. (2006). Matriptase and its putative role in cancer. Cell. Mol. Life Sci. 63, 2968–2978.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q. (2003). Type II transmembrane serine proteases. Curr. Top Dev. Biol. 54, 167–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Gyo Kim.

About this article

Cite this article

Kim, S.B., Lee, D., Jeong, JW. et al. Soluble epithin/PRSS14 secreted from cancer cells contains active angiogenic potential. Mol Cells 29, 617–623 (2010). https://doi.org/10.1007/s10059-010-0077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0077-0

Keywords

Navigation