Skip to main content
Log in

Fragile X mental retardation protein in learning-related synaptic plasticity

  • Minireview
  • Published:
Molecules and Cells

Abstract

Fragile X syndrome (FXS) is caused by a lack of the fragile X mental retardation protein (FMRP) due to silencing of the Fmr1 gene. As an RNA binding protein, FMRP is thought to contribute to synaptic plasticity by regulating plasticity-related protein synthesis and other signaling pathways. Previous studies have mostly focused on the roles of FMRP within the hippocampus - a key structure for spatial memory. However, recent studies indicate that FMRP may have a more general contribution to brain functions, including synaptic plasticity and modulation within the prefrontal cortex. In this brief review, we will focus on recent studies reported in the prefrontal cortex, including the anterior cingulate cortex (ACC). We hypothesize that alterations in ACC-related plasticity and synaptic modulation may contribute to various forms of cognitive deficits associated with FXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antar, L.N., Afroz, R., Dictenberg, J.B., Carroll, R.C., and Bassell, G.J. (2004). Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J. Neurosci. 24, 2648–2655.

    Article  CAS  PubMed  Google Scholar 

  • Bagni, C., and Greenough, W.T. (2005). From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, C.E., Verheij, C., Willemsen, R., Vanderhelm, R., Oerlemans, F., Vermey, M., Bygrave, A., Hoogeveen, A.T., Oostra, B.A., and Reyniers, E. (1994). Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33.

    Google Scholar 

  • Bassell, G.J., and Gross, C. (2008). Reducing glutamate signaling pays off in fragile X. Nat. Med. 14, 249–250.

    Article  CAS  PubMed  Google Scholar 

  • Bassell, G.J., and Warren, S.T. (2008). Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214.

    Article  CAS  PubMed  Google Scholar 

  • Bear, M.F. (1996). A synaptic basis for memory storage in the cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 13453–13459.

    Article  CAS  PubMed  Google Scholar 

  • Bear, M.F., Huber, K.M., and Warren, S.T. (2004). The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Bliss, T.V., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Bureau, I., Shepherd, G.M., and Svoboda, K. (2008). Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice. J. Neurosci. 28, 5178–5188.

    Article  CAS  PubMed  Google Scholar 

  • Castren, M., Lampinen, K.E., Miettinen, R., Koponen, E., Sipola, I., Bakker, C.E., Oostra, B.A., and Castren, E. (2002). BDNF regulates the expression of fragile X mental retardation protein mRNA in the hippocampus. Neurobiol. Dis. 11, 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Centonze, D., Rossi, S., Mercaldo, V., Napoli, I., Ciotti, M.T., Chiara, V.D., Musella, A., Prosperetti, C., Calabresi, P., Bernardi, G., et al. (2007). Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol. Psychiatry 63, 963–973.

    Article  PubMed  Google Scholar 

  • Chen, L., and Toth, M. (2001). Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103, 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  • Collingridge, G.L., Isaac, J.T., and Wang, Y.T. (2004). Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962.

    Article  CAS  PubMed  Google Scholar 

  • Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401–5404.

    Article  CAS  PubMed  Google Scholar 

  • Curia, G., Papouin, T., Seguela, P., and Avoli, M. (2009). Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome. Cereb. Cortex 19, 1515–1520.

    Article  PubMed  Google Scholar 

  • D’Antuono, M., Merlo, D., and Avoli, M. (2003). Involvement of cholinergic and gabaergic systems in the fragile X knockout mice. Neuroscience 119, 9–13.

    Article  PubMed  Google Scholar 

  • D’Hulst, C., and Kooy, R.F. (2007). The GABAA receptor: a novel target for treatment of fragile X? Trends Neurosci. 30, 425–431.

    Article  PubMed  Google Scholar 

  • D’Hulst, C., De Geest, N., Reeve, S.P., Van Dam, D., De Deyn, P.P., Hassan, B.A., and Kooy, R.F. (2006). Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 1121, 238–245.

    Article  PubMed  Google Scholar 

  • Desai, N.S., Casimiro, T.M., Gruber, S.M., and Vanderklish, P.W. (2006). Early postnatal plasticity in neocortex of Fmr1 knockout mice. J. Neurophysiol. 96, 1734–1745.

    Article  CAS  PubMed  Google Scholar 

  • Devys, D., Lutz, Y., Rouyer, N., Bellocq, J.P., and Mandel, J.L. (1993). The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat. Genet. 4, 335–340.

    Article  CAS  PubMed  Google Scholar 

  • Dobkin, C., Rabe, A., Dumas, R., El Idrissi, A., Haubenstock, H., and Brown, W.T. (2000). Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 100, 423–429.

    Article  CAS  PubMed  Google Scholar 

  • Dolen, G., Osterweil, E., Rao, B.S., Smith, G.B., Auerbach, B.D., Chattarji, S., and Bear, M.F. (2007). Correction of fragile X syndrome in mice. Neuron 56, 955–962.

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi, A., Ding, X.H., Scalia, J., Trenkner, E., Brown, W.T., and Dobkin, C. (2005). Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci. Lett. 377, 141–146.

    Article  PubMed  Google Scholar 

  • Feng, Y., Gutekunst, C.A., Eberhart, D.E., Yi, H., Warren, S.T., and Hersch, S.M. (1997). Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J. Neurosci. 17, 1539–1547.

    CAS  PubMed  Google Scholar 

  • Ferrari, F., Mercaldo, V., Piccoli, G., Sala, C., Cannata, S., Achsel, T., and Bagni, C. (2007). The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol. Cell. Neurosci. 34, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Frankland, P.W., Wang, Y., Rosner, B., Shimizu, T., Balleine, B.W., Dykens, E.M., Ornitz, E.M., and Silva, A.J. (2004). Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol. Psychiatry 9, 417–425.

    Article  CAS  PubMed  Google Scholar 

  • Galvez, R., and Greenough, W.T. (2005). Sequence of abnormal dendritic spine development in primary somatosensory cortex of a mouse model of the fragile X mental retardation syndrome. Am. J. Med. Genet. A 135, 155–160.

    PubMed  Google Scholar 

  • Godfraind, J.M., Reyniers, E., De Boulle, K., D’Hooge, R., De Deyn, P.P., Bakker, C.E., Oostra, B.A., Kooy, R.F., and Willems, P.J. (1996). Long-term potentiation in the hippocampus of fragile X knockout mice. Am. J. Med. Genet. 64, 246–251.

    Article  CAS  PubMed  Google Scholar 

  • Gruss, M., and Braun, K. (2004). Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice. Neurochem. Int. 45, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Hagerman, B. (2002). Speech recognition threshold in slightly and fully modulated noise for hearing-impaired subjects. Int. J. Audiol. 41, 321–329.

    Article  PubMed  Google Scholar 

  • Hagerman, P.J. (2008). The fragile X prevalence paradox. J. Med. Genet. 45, 498–499.

    Article  PubMed  Google Scholar 

  • Hagerman, R.J., Berry-Kravis, E., Kaufmann, W.E., Ono, M.Y., Tartaglia, N., Lachiewicz, A., Kronk, R., Delahunty, C., Hessl, D., Visootsak, J., et al. (2009). Advances in the treatment of fragile X syndrome. Pediatrics 123, 378–390.

    Article  PubMed  Google Scholar 

  • Hou, L., Antion, M.D., Hu, D., Spencer, C.M., Paylor, R., and Klann, E. (2006). Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–454.

    Article  CAS  PubMed  Google Scholar 

  • Hu, H., Qin, Y., Bochorishvili, G., Zhu, Y., van Aelst, L., and Zhu, J.J. (2008). Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome. J. Neurosci. 28, 7847–7862.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.Y., and Kandel, E.R. (1995). D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. USA 92, 2446–2450.

    Article  CAS  PubMed  Google Scholar 

  • Huber, K.M., Gallagher, S.M., Warren, S.T., and Bear, M.F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746–7750.

    Article  CAS  PubMed  Google Scholar 

  • Igartua, I., Solis, J.M., and Bustamante, J. (2007). Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1. Neuropharmacology 52, 1586–1595.

    Article  CAS  PubMed  Google Scholar 

  • Irwin, S.A., Idupulapati, M., Gilbert, M.E., Harris, J.B., Chakravarti, A.B., Rogers, E.J., Crisostomo, R.A., Larsen, B.P., Mehta, A., Alcantara, C.J., et al. (2002). Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140–146.

    Article  PubMed  Google Scholar 

  • Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.

    Article  CAS  PubMed  Google Scholar 

  • Klann, E., and Dever, T.E. (2004). Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942.

    Article  CAS  PubMed  Google Scholar 

  • Larson, J., Jessen, R.E., Kim, D., Fine, A.K., and du Hoffmann, J. (2005). Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. J. Neurosci. 25, 9460–9469.

    Article  CAS  PubMed  Google Scholar 

  • Lauterborn, J.C., Rex, C.S., Kramar, E., Chen, L.Y., Pandyarajan, V., Lynch, G., and Gall, C.M. (2007). Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J. Neurosci. 27, 10685–10694.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Pelletier, M.R., Perez Velazquez, J.L., and Carlen, P.L. (2002). Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol. Cell. Neurosci. 19, 138–151.

    Article  PubMed  Google Scholar 

  • McBride, S.M., Choi, C.H., Wang, Y., Liebelt, D., Braunstein, E., Ferreiro, D., Sehgal, A., Siwicki, K.K., Dockendorff, T.C., Nguyen, H.T., et al. (2005). Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45, 753–764.

    Article  CAS  PubMed  Google Scholar 

  • Menon, V., Leroux, J., White, C.D., and Reiss, A.L. (2004). Frontostriatal deficits in fragile X syndrome: relation to FMR1 gene expression. Proc. Natl. Acad. Sci. USA 101, 3615–3620.

    Article  CAS  PubMed  Google Scholar 

  • Meredith, R.M., Holmgren, C.D., Weidum, M., Burnashev, N., and Mansvelder, H.D. (2007). Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron 54, 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Mineur, Y.S., Sluyter, F., de Wit, S., Oostra, B.A., and Crusio, W.E. (2002). Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12, 39–46.

    Article  PubMed  Google Scholar 

  • Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225.

    CAS  PubMed  Google Scholar 

  • Musumeci, S.A., Calabrese, G., Bonaccorso, C.M., D’Antoni, S., Brouwer, J.R., Bakker, C.E., Elia, M., Ferri, R., Nelson, D.L., Oostra, B.A., et al. (2007). Audiogenic seizure susceptibility is reduced in fragile X knockout mice after introduction of FMR1 transgenes. Exp. Neurol. 203, 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto, M., Nalavadi, V., Epstein, M.P., Narayanan, U., Bassell, G.J., and Warren, S.T. (2007). Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA 104, 15537–15542.

    Article  CAS  PubMed  Google Scholar 

  • Napoli, I., Mercaldo, V., Boyl, P.P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., Mohr, E., Massimi, M., Falconi, M., et al. (2008). The fragile X syndrome protein represses activitydependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042–1054.

    Article  CAS  PubMed  Google Scholar 

  • Nicoll, R.A., and Malenka, R.C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118.

    Article  CAS  PubMed  Google Scholar 

  • Nimchinsky, E.A., Oberlander, A.M., and Svoboda, K. (2001). Abnormal development of dendritic spines in FMR1 knock-out mice. J. Neurosci. 21, 5139–5146.

    CAS  PubMed  Google Scholar 

  • Pacey, L.K., and Doering, L.C. (2007). Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome. Glia 55, 1601–1609.

    Article  PubMed  Google Scholar 

  • Paradee, W., Melikian, H.E., Rasmussen, D.L., Kenneson, A., Conn, P.J., and Warren, S.T. (1999). Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94, 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Price, T.J., Rashid, M.H., Millecamps, M., Sanoja, R., Entrena, J.M., and Cervero, F. (2007). Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J. Neurosci. 27, 13958–13967.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, L.F., Hao, Y.H., Li, Q.Z., and Xiong, Z.Q. (2008). Fragile X syndrome and epilepsy. Neurosci. Bull. 24, 338–344.

    Article  CAS  PubMed  Google Scholar 

  • Reiss, A.L., and Dant, C.C. (2003). The behavioral neurogenetics of fragile X syndrome: analyzing gene-brain-behavior relationships in child developmental psychopathologies. Dev. Psychopathol. 15, 927–968.

    Article  PubMed  Google Scholar 

  • Restivo, L., Ferrari, F., Passino, E., Sgobio, C., Bock, J., Oostra, B.A., Bagni, C., and Ammassari-Teule, M. (2005). Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc. Natl. Acad. Sci. USA 102, 11557–11562.

    Article  CAS  PubMed  Google Scholar 

  • Ronesi, J.A., and Huber, K.M. (2008). Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Sci. Signal. 1, pe6.

    Article  PubMed  Google Scholar 

  • Sawaguchi, T., and Goldman-Rakic, P.S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947–950.

    Article  CAS  PubMed  Google Scholar 

  • Shang, Y., Wang, H., Mercaldo, V., Li, X., Chen, T., and Zhuo, M. (2009). Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice. J. Neurochem. 111, 635–646.

    Article  CAS  PubMed  Google Scholar 

  • Tassone, F., Hagerman, R.J., Ikle, D.N., Dyer, P.N., Lampe, M., Willemsen, R., Oostra, B.A., and Taylor, A.K. (1999). FMRP expression as a potential prognostic indicator in fragile X syndrome. Am. J. Med. Genet. 84, 250–261.

    Article  CAS  PubMed  Google Scholar 

  • Todd, P.K., and Mack, K.J. (2000). Sensory stimulation increases cortical expression of the fragile X mental retardation protein in vivo. Brain Res. Mol. Brain Res. 80, 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, B., Richards, R.I., and Lardelli, M. (2006). Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum. Mol. Genet. 15, 3446–3458.

    Article  CAS  PubMed  Google Scholar 

  • Turner, G., Webb, T., Wake, S., and Robinson, H. (1996). Prevalence of fragile X syndrome. Am. J. Med. Genet. 64, 196–197.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, G., Chakravarty, S., Sarvey, J., Bramham, C., and Herkenham, M. (2000). Fragile X (fmr1) mRNA expression is differentially regulated in two adult models of activity-dependent gene expression. Brain Res. Mol. Brain Res. 75, 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Van Dam, D., D’Hooge, R., Hauben, E., Reyniers, E., Gantois, I., Bakker, C.E., Oostra, B.A., Kooy, R.F., and De Deyn, P.P. (2000). Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav. Brain Res. 117, 127–136.

    Article  PubMed  Google Scholar 

  • Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.

    Article  CAS  PubMed  Google Scholar 

  • Volk, L.J., Pfeiffer, B.E., Gibson, J.R., and Huber, K.M. (2007). Multiple Gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile X syndrome mental retardation. J. Neurosci. 27, 11624–11634.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Ku, L., Osterhout, D.J., Li, W., Ahmadian, A., Liang, Z., and Feng, Y. (2004a). Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum. Mol. Genet 13, 79–89.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Vijayraghavan, S., and Goldman-Rakic, P.S. (2004b). Selective D2 receptor actions on the functional circuitry of working memory. Science 303, 853–856.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Wu, L.J., Kim, S.S., Lee, F.J., Gong, B., Toyoda, H., Ren, M., Shang, Y.Z., Xu, H., Liu, F., et al. (2008). FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59, 634–647.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Fukushima, H., Kida, S., and Zhuo, M. (2009). Ca2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex. J. Biol. Chem. 284, 18953–18962.

    Article  CAS  PubMed  Google Scholar 

  • Weiler, I.J., Irwin, S.A., Klintsova, A.Y., Spencer, C.M., Brazelton, A.D., Miyashiro, K., Comery, T.A., Patel, B., Eberwine, J., and Greenough, W.T. (1997). Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. USA 94, 5395–5400.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, B.M., and Cox, C.L. (2007). Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Proc. Natl. Acad. Sci. USA 104, 2454–2459.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Q.J., Rammal, M., Tranfaglia, M., and Bauchwitz, R.P. (2005). Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053–1066.

    Article  CAS  PubMed  Google Scholar 

  • Yuen, E.Y., and Yan, Z. (2009). Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex. J. Neurosci. 29, 550–562.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.Q., Friedman, D.B., Wang, Z., Woodruff, E., 3rd, Pan, L., O’Donnell, J., and Broadie, K. (2005). Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis. Mo.l Cell. Proteomics 4, 278–290.

    Article  CAS  Google Scholar 

  • Zhao, M.G., Toyoda, H., Ko, S.W., Ding, H.K., Wu, L.J., and Zhuo, M. (2005). Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25, 7385–7392.

    Article  CAS  PubMed  Google Scholar 

  • Zhuo, M. (2008). Cortical excitation and chronic pain. Trends Neurosci. 31, 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Zhuo, M. (2009). Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol. Brain 2, 4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhuo.

About this article

Cite this article

Mercaldo, V., Descalzi, G. & Zhuo, M. Fragile X mental retardation protein in learning-related synaptic plasticity. Mol Cells 28, 501–507 (2009). https://doi.org/10.1007/s10059-009-0193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0193-x

Keywords

Navigation