Skip to main content
Log in

Tacrolimus differentially regulates the proliferation of conventional and regulatory CD4+ T cells

  • Published:
Molecules and Cells

Abstract

Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on CD4+ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on CD4+ T cell subsets. Mouse or human CD4+ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of CD4+ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional CD4+ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory CD4+ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, S.E., Crome, S.Q., Crellin, N.K., Passerini, L., Steiner, T.S., Bacchetta, R., Roncarolo, M.G., and Levings, M.K. (2007). Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Baecher-Allan, C., and Hafler, D.A. (2004). Suppressor T cells in human diseases. J. Exp. Med. 200, 273–276.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia, M., Stabilini, A., and Roncarolo, M.G. (2005). Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748.

    Article  PubMed  CAS  Google Scholar 

  • Begovich, A.B., Carlton, V.E., Honigberg, L.A., Schrodi, S.J., Chokkalingam, A.P., Alexander, H.C., Ardlie, K.G., Huang, Q., Smith, A.M., Spoerke, J.M.et al. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., and Ochs, H.D. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21.

    Article  PubMed  CAS  Google Scholar 

  • Bottini, N., Musumeci, L., Alonso, A., Rahmouni, S., Nika, K., Rostamkhani, M., MacMurray, J., Meloni, G.F., Lucarelli, P., Pellecchia, M. et al. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337–338.

    Article  PubMed  CAS  Google Scholar 

  • Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G., and Wahl, S.M. (2003). Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, F.J. (2000). FK506, an immunosuppressant targeting calcineurin function. Curr. Med. Chem. 7, 731–748.

    PubMed  CAS  Google Scholar 

  • Gomez-Rodriguez, J., Readinger, J.A., Viorritto, I.C., Mueller, K.L., Houghtling, R.A., and Schwartzberg, P.L. (2007). Tec kinases, actin, and cell adhesion. Immunol. Rev. 218, 45–64.

    Article  PubMed  CAS  Google Scholar 

  • Granelli-Piperno, A., Nolan, P., Inaba, K., and Steinman, R.M. (1990). The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin 2 promoter. J. Exp. Med. 172, 1869–1872.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen, P.K., and Batliwalla, F. (2005). PTPN22 and rheumatoid arthritis: gratifying replication. Arthritis Rheum. 52, 1952–1955.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen, P.K., Lee, H.S., Batliwalla, F., and Begovich, A.B. (2006). PTPN22: setting thresholds for autoimmunity. Semin Immunol. 18, 214–223.

    Article  PubMed  CAS  Google Scholar 

  • Haxhinasto, S., Mathis, D., and Benoist, C. (2008). The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  • Kiani, A., Rao, A., and Aramburu, J. (2000). Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372.

    Article  PubMed  CAS  Google Scholar 

  • Mantel, P.Y., Ouaked, N., Ruckert, B., Karagiannidis, C., Welz, R., Blaser, K., and Schmidt-Weber, C.B. (2006). Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 176, 3593–3602.

    PubMed  CAS  Google Scholar 

  • Marson, A., Kretschmer, K., Frampton, G.M., Jacobsen, E.S., Polansky, J.K., MacIsaac, K.D., Levine, S.S., Fraenkel, E., von Boehmer, H., and Young, R.A. (2007). Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935.

    Article  PubMed  CAS  Google Scholar 

  • Orozco, G., Sanchez, E., Gonzalez-Gay, M.A., Lopez-Nevot, M.A., Torres, B., Caliz, R., Ortego-Centeno, N., Jimenez-Alonso, J., Pascual-Salcedo, D., Balsa, A., et al. (2005). Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 52, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A.C., and Horak, I. (1993). Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer, E.M., Debnath, J., Yap, G., McVicar, D., Liao, X.C., Littman, D.R., Sher, A., Varmus, H.E., Lenardo, M.J., and Schwartzberg, P.L. (1999). Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 284, 638–641.

    Article  PubMed  CAS  Google Scholar 

  • Setoguchi, R., Hori, S., Takahashi, T., and Sakaguchi, S. (2005). Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., and Sakaguchi, S. (2002). Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Tocci, M.J., Matkovich, D.A., Collier, K.A., Kwok, P., Dumont, F., Lin, S., Degudicibus, S., Siekierka, J.J., Chin, J., and Hutchinson, N.I. (1989). The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J. Immunol. 726, 718–726.

    Google Scholar 

  • Tran, D.Q., Ramsey, H., and Shevach, E.M. (2007). Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by Tcell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., Benard, A., Van Landeghen, M., Buckner, J.H., and Ziegler, S.F. (2003). Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest. 112, 1437–1443.

    PubMed  CAS  Google Scholar 

  • Walker, M.R., Carson, B.D., Nepom, G.T., Ziegler, S.F., and Buckner, J.H. (2005). De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc. Natl. Acad. Sci. USA 102, 4103–4108.

    Article  PubMed  CAS  Google Scholar 

  • Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.L., Buist, N., Levy-Lahad, E., Mazzella, M., Goulet, O., Perroni, L. et al. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20.

    Article  PubMed  CAS  Google Scholar 

  • Yocum, D.E., Furst, D.E., Bensen, W.G., Burch, F.X., Borton, M.A., Mengle-Gaw, L.J., Schwartz, B.D., Wisememandle, W., and Mekki, Q.A. (2004). Safety of tacrolimus in patients with rheumatoid arthritis: long-term experience. Rheumatology 43, 992–999.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X., Sun, J.P., He, Y., Guo, X., Liu, S., Zhou, B., Hudmon, A., and Zhang, Z.Y. (2007). Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc. Natl. Acad. Sci. USA 104, 19767–19772.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keishi Fujio.

About this article

Cite this article

Kogina, K., Shoda, H., Yamaguchi, Y. et al. Tacrolimus differentially regulates the proliferation of conventional and regulatory CD4+ T cells. Mol Cells 28, 125–130 (2009). https://doi.org/10.1007/s10059-009-0114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0114-z

Keywords

Navigation