Skip to main content
Log in

Gain of new exons and promoters by lineage-specific transposable elements-integration and conservation event on CHRM3 gene

  • Published:
Molecules and Cells

Abstract

The CHRM3 gene is a member of the muscarinic acetylcholine receptor family that plays important roles in the regulation of fundamental physiological functions. The evolutionary mechanism of exon-acquisition and alternative splicing of the CHRM3 gene in relation to transposable elements (TEs) were analyzed using experimental approaches and in silico analysis. Five different transcript variants (T1, T2, T3, T3-1, and T4) derived from three distinct promoter regions (T1: L1HS, T2, T4: original, T3, T3-1: THE1C) were identified. A placenta (T1) and testis (T3 and T3-1)-dominated expression pattern appeared to be controlled by different TEs (L1HS and THE1C) that were integrated into the common ancestor genome during primate evolution. Remarkably, the T1 transcript was formed by the integration event of the human specific L1HS element. Among the 12 different brain regions, the brain stem, olfactory region, and cerebellum showed decreased expression patterns. Evolutionary analysis of splicing sites and alternative splicing suggested that the exon-acquisition event was determined by a selection and conservation mechanism. Furthermore, continuous integration events of transposable elements could produce lineage specific alternative transcripts by providing novel promoters and splicing sites. Taken together, exon-acquisition and alternative splicing events of CHRM3 genes were shown to have occurred through the continuous integration of transposable elements following conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Bièche, I., Laurent, A., Laurendeau, I., Duret, L., Giovangrandi, Y., Frendo, J.L., Olivi, M., Fausser, J.L., Evain-Brion, D., and Vidaud, M. (2003). Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol. Reprod. 68, 1422–1429.

    Article  PubMed  Google Scholar 

  • Braverman, A.S., Tallarida, R.J., and Ruggieri, M.R. (2008). The use of occupation isoboles for analysis of a response mediated by two receptors: M2 and M3 muscarinic receptor subtype-induced mouse stomach contractions. J. Pharmacol. Exp. Ther. 325, 954–960.

    Article  PubMed  CAS  Google Scholar 

  • Brett, D., Hanke, J., Lehmann, G., Haase, S., Delbrück, S., Krueger, S., Reich, J., and Bork, P. (2000). EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Calarco, J.A., Xing, Y., Caceres, M., Calarco, J.P., Xiao, X., Pan, Q., Lee, C., Preuss, T.M., and Blencowe, B.J. (2007). Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev. 21, 2963–2975.

    Article  PubMed  CAS  Google Scholar 

  • Cammeron, J.R., Loh, E.Y., and Davis, R.W. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16, 739–751.

    Article  Google Scholar 

  • Dunn, C.A., and Mager, D.L. (2005). Transcription of the human and rodent SPAM1/PH-20 genes initiates within an ancient endogenous retrovirus. BMC Genomics 6, 47.

    Article  PubMed  Google Scholar 

  • Dunn, C.A., Medstrand, P., and Mager, D.L. (2003). An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc. Natl. Acad. Sci. USA 100, 12841–12846.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, C.A., Romanish, M.T., Gutierrez, L.E., van de Lagemaat, L.N., and Mager, D.L. (2006). Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 266, 335–342.

    Article  Google Scholar 

  • Forsythe, S.M., Kogut, P.C., McConville, J.F., Fu, Y., McCauley, J.A., Halayko, A.J., Liu, H.W., Kao, A., Fernandes, D.J., Bellam, S., et al. (2002). Structure and transcription of the human m3 muscarinic receptor gene. Am. J. Respir. Cell Mol. Biol. 26, 298–305.

    PubMed  CAS  Google Scholar 

  • Gautam, D., Duttaroy, A., Cui, Y., Han, S.J., Deng, C., Seeger, T., Alzheimer, C., and Wess, J. (2006). M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes. J. Mol. Neurosci. 30, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Gerthoffer, W.T. (2005). Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G849–853.

    Article  PubMed  CAS  Google Scholar 

  • Grindley, N.D.F., and Reed, R.R. (1985). Transpositional recombination in prokaryotes. Ann. Rev. Biochem. 54, 863–896.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Traurig, M., Ma, L., Kobes, S., Harper, I., Infante, A.M., Bogardus, C., Baier, L.J., and Prochazka, M. (2006). CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians. Diabetes 55, 3625–3629.

    Article  PubMed  CAS  Google Scholar 

  • Huh, J.W., Ha, H.S., Kim, D.S., and Kim, H.S. (2008). Placentarestricted expression of LTR-derived NOS3. Placenta 29, 602–608.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  Google Scholar 

  • Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418–420.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.S., Kim, T.H., Huh, J.W., Kim, I.C., Kim, S.W., Park, H.S., and Kim, H.S. (2006). LINE FUSION GENES: a database of LINE expression in human genes. BMC Genomics 7, 139.

    Article  PubMed  Google Scholar 

  • Kitazawa, T., Hashiba, K., Cao, J., Unno, T., Komori, S., Yamada, M., Wess, J., and Taneike, T. (2007). Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: studies with muscarinic receptor knockout mice. Eur. J. Pharmacol. 554, 212–222.

    Article  PubMed  CAS  Google Scholar 

  • Landry, J.R., and Mager, D.L. (2003). Functional analysis of the endogenous retroviral promoter of the human endothelin B receptor gene. J. Virol. 77, 7459–7466.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Maor, G., Sorek, R., Shomron, N., and Ast, G. (2003). The birth of an alternatively spliced exon: 3’ splice-site selection in Alu exons. Science 300, 1288–1291.

    Article  PubMed  CAS  Google Scholar 

  • Mätlik, K., Redik, K., and Speek, M. (2006). L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 1, 71753.

    Google Scholar 

  • Matsui, M., Araki, Y., Karasawa, H., Matsubara, N., Taketo, M.M., and Seldin, M.F. (1999). Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet. Syst. 74, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 35, 243–251.

    Google Scholar 

  • Mills, R.E., Bennett, E.A., Iskow, R.C., Luttig, C.T., Tsui, C., Pittard, W.S., and Devine, S.E. (2006). Recently mobilized transposons in the human and chimpanzee genomes. Am. J. Hum. Genet. 78, 671–679.

    Article  PubMed  CAS  Google Scholar 

  • Mills, R.E., Bennett, E.A., Iskow, R.C., and Devine, S.E. (2007). Which transposable elements are active in the human genome? Trends Genet. 23, 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Renuka, T.R., Ani, D.V., and Paulose, C.S. (2004). Alterations in the muscarinic M1 and M3 receptor gene expression in the brain stem during pancreatic regeneration and insulin secretion in weanling rats. Life Sci. 75, 2269–2280.

    Article  PubMed  CAS  Google Scholar 

  • Rio, D.C. (1990). Molecular mechanisms regulating Drosophila P element transposition. Ann. Rev. Gen. 24, 543–578.

    Article  CAS  Google Scholar 

  • Sela, N., Mersch, B., Gal-Mark, N., Lev-Maor, G., Hotz-Wagenblatt, A., and Ast, G. (2007). Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol. 8, R127.

    Article  PubMed  Google Scholar 

  • Speek, M. (2001). Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985.

    Article  PubMed  CAS  Google Scholar 

  • Sverdlov, E.D. (2000). Retroviruses and primate evolution. Bioessays 22, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Urrutia, A.O., Ocaña, L.B., and Hurst, L.D. (2008) Do Alu repeats drive the evolution of the primate transcriptome? Genome Biol. 9, R25.

    Article  PubMed  Google Scholar 

  • van de Lagemaat, L.N., Landry, J.R., Mager, D.L., and Medstrand, P. (2003). Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536.

    Article  PubMed  Google Scholar 

  • Wall, S.J., Yasuda, R.P., Li, M., and Wolfe, B.B. (1991). Development of an antiserum against m3 muscarinic receptors: distribution of m3 receptors in rat tissues and clonal cell lines. Mol. Pharmacol. 40, 783–789.

    PubMed  CAS  Google Scholar 

  • Watanabe, H., Fujiyama, A., Hattori, M., Taylor, T.D., Toyoda, A., Kuroki, Y., Noguchi, H., BenKahla, A., Lehrach, H., Sudbrak, R., et al. (2004). DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429, 382–328.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, M., Miyakawa, T., Duttaroy, A., Yamanaka, A., Moriguchi, T., Makita, R., Ogawa, M., Chou, C.J., Xia, B., Crawley, J.N., et al. (2001). Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Yamada, M., Gomeza, J., Basile, A.S., and Wess, J. (2002). Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J. Neurosci. 22, 6347–6352.

    PubMed  CAS  Google Scholar 

  • Zhang, H.M., Chen, S.R., Matsui, M., Gautam, D., Wess, J., and Pan, H.L. (2006). Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice. Mol. Pharmacol. 69, 1048–1055.

    PubMed  CAS  Google Scholar 

  • Zhang, H.M., Zhou, H.Y., Chen, S.R., Gautam, D., Wess, J., and Pan, H.L. (2007). Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice. J. Pharmacol. Exp. Ther. 232, 963–971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Tae Chang.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Huh, JW., Kim, YH., Lee, SR. et al. Gain of new exons and promoters by lineage-specific transposable elements-integration and conservation event on CHRM3 gene. Mol Cells 28, 111–117 (2009). https://doi.org/10.1007/s10059-009-0106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0106-z

Keywords

Navigation