Skip to main content
Log in

Basement membrane proteoglycans: Modulators Par Excellence of cancer growth and angiogenesis

  • Minireview
  • Published:
Molecules and Cells

Abstract

Proteoglycans located in basement membranes, the nanostructures underling epithelial and endothelial layers, are unique in several respects. They are usually large, elongated molecules with a collage of domains that share structural and functional homology with numerous extracellular matrix proteins, growth factors and surface receptors. They mainly carry heparan sulfate side chains and these contribute not only to storing and preserving the biological activity of various heparan sulfate-binding cytokines and growth factors, but also in presenting them in a more Ȍactive configurationȍ to their cognate receptors. Abnormal expression or deregulated function of these proteoglycans affect cancer and angiogenesis, and are critical for the evolution of the tumor microenvironment. This review will focus on the functional roles of the major heparan sulfate proteoglycans from basement membrane zones: perlecan, agrin and collagen XVIII, and on their roles in modulating cancer growth and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi, A., Hahnfeldt, P., Maercker, C., Gröne, H.-J., Debus, J., Ansorge, W., Folkman, J., Hlatky, L., and Huber, P.E. (2004). Endostatin’s antioangiogenic signaling network. Mol. Cell l3, 649–663.

    Article  Google Scholar 

  • Adatia, R., Albini, A., Carlone, S., Giunciuglio, D., Benelli, R., Santi, L., and Noonan, D.M. (1998). Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA. Ann. Oncol. 8, 1257–1261.

    Article  Google Scholar 

  • Adkins, J.N., Varnum, S.M., Auberry, K.J., Moore, R.J., Angell, N.H., Smith, R.D., Springer, D.L., and Pounds, J.G. (2002). Toward a human blood serum proteome. Analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteom. 1, 947–955.

    Article  CAS  Google Scholar 

  • Arikawa-Hirasawa, E., Watanabe, E., Takami, H., Hassell, J.R., and Yamada, Y. (1999). Perlecan is essential for cartilage and cephalic development. Nature Genet. 23, 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Aviezer, D., Hecht, D., Safran, M., Eisinger, M., David, G., and Yayon, A. (1994). Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  • Aviezer, D., Iozzo, R.V., Noonan, D.M., and Yayon, A. (1997). Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol. Cell. Biol. 17, 1938–1946.

    PubMed  CAS  Google Scholar 

  • Baerwald-De La Torre, K., Winzen, U., Halfter, W., and Bixby, J.L. (2004). Glycosaminoglycan-dependent and -independent inhibition of neurite outgrowth by agrin. J. Neurochem. 90, 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Batmunkh, E., Tátrai, P., Szabó, E., Lódi, C., Holczbauer, A., Páska, C., Kupcsulik, P., Kiss, A., Schaff, Z., and Kovalszky, I. (2007). Comparison of the expression of agrin, a basement membrane heparan sulfate proteoglycan, in cholangiocarcinoma and hepatocellular carcinoma. Hum. Pathol. 38, 1508–1515.

    Article  PubMed  CAS  Google Scholar 

  • Bezakova, G., and Rüegg, M.A. (2003). New insights into the roles of agrin. Nature Rev. Mol. Cell Biol. 4, 295–308.

    Article  CAS  Google Scholar 

  • Bix, G., and Iozzo, R.V. (2005). Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol. 15, 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Bix, G., and Iozzo, R.V. (2008). Novel interactions of perlecan: Unraveling perlecan’s role in angiogenesis. Microsc. Res. 71, 339–348.

    Article  CAS  Google Scholar 

  • Bix, G., Fu, J., Gonzalez, E., Macro, L., Barker, A., Campbell, S., Zutter, M.M., Santoro, S.A., Kim, J.K., Hook, M., et al. (2004). Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through the α2β1 integrin. J. Cell Biol. 166, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Bix, G., Castello, R., Burrows, M., Zoeller, J.J., Weech, M., Iozzo, R.A., Cardi, C., Thakur, M.T., Barker, C.A., Camphausen, K.C., et al. (2006). Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metabolism. J. Natl. Cancer Inst. 98, 1634–1646.

    Article  PubMed  CAS  Google Scholar 

  • Bix, G., Iozzo, R.A., Woodall, B., Burrows, M., McQuillan, A., Campbell, S., Fields, G.B., and Iozzo, R.V. (2007). Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the α2β1 integrin receptor. Blood 109, 3745–3748.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, R.W., Dickman, D.K., Nunez, L., Glass, D.J., and Sanes, J.R. (2002). Mapping sites responsible for interactions of agrin with neurons. J. Neurochem. 83, 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Cailhier, J.-F., Sirois, I., Raymond, M.-A., Lepage, S., Laplante, P., Brassard, N., Prat, A., Iozzo, R.V., Pshezhetsky, A.V., and Hebert, M.-J. (2008). Caspase-3 activation triggers extracellular release of cathepsin L and endorepellin proteolysis. J. Biol. Chem. 283, 27220–27229.

    Article  PubMed  CAS  Google Scholar 

  • Chang, J.W., Kang, U.-B., Kim, D.H., Yi, J.K., Lee, J.W., Noh, D.-Y., Lee, C., and Yu, M.-H. (2008). Identification of circulating endorepellin LG3 fragment: Potential use as a serological biomarker for breast cancer. Proteomics Clin. Appl. 2, 23–32.

    Article  CAS  Google Scholar 

  • Clamp, A.R., and Jayson, G.C. (2005). The clinical potential of antiangiogenic fragments of extracellular matrix proteins. Br. J. Cancer 93, 967–972.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, I.R., Murdoch, A.D., Naso, M.F., Marchetti, D., Berd, D., and Iozzo, R.V. (1994). Abnormal expression of perlecan proteoglycan in metastatic melanomas. Cancer Res. 54, 5771–5774.

    PubMed  CAS  Google Scholar 

  • Costell, M., Gustafsson, E., Aszodi, A., Morgelin, M., Bloch, W., Hunziker, E., Addicks, K., Timpl, R., and Fassler, R. (1999). Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109–1122.

    Article  PubMed  CAS  Google Scholar 

  • Costell, M., Carmona, R., Gustafsson, E., Gonzalez-Iriarte, M., Fassler, R., and Munoz-Chapuli, R. (2002). Hyperplastic conotruncal endo-cardial cushions and transposition of great arteries in perlecan-null mice. Circ. Res. 91, 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Denzer, A.J., Sculthess, T., Fauser, C., Schumacher, B., Kammerer, R.A., Engel, J., and Ruegg, M.A. (1998). Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J. 17, 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Dhanabal, M., Ramchandran, R., Waterman, M.J., Lu, H., Knebelmann, B., Segal, M., and Sukhatme, V.P. (1999). Endostatin induces endothelial cell apoptosis. J. Biol. Chem. 274, 11721–11726.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, J.E., Berzin, T.M., Rafii, M.S., Glass, D.J., Yancopoulos, G.D., Fallon, J.R., and Stopa, E.G. (1999). Agrin in Alzheimer’s disease: Altered solubility and abnormal distribution within microvasculature and brain parenchyma. Proc. Natl. Acad. Sci. USA 96, 6468–6472.

    Article  PubMed  CAS  Google Scholar 

  • Dong, S., Cole, G.J., and Halfter, W. (2003). Expression of collagen xViii and localization of its glycosaminoglycan attachment sites. J. Biol. Chem. 278, 1700–1707.

    Article  PubMed  CAS  Google Scholar 

  • Elamaa, H., Snellman, A., Rehn, M., Autio-Harmainen, H., and Pihlajaniemi, T. (2003). Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Matrix Biol. 22, 427–442.

    Article  PubMed  CAS  Google Scholar 

  • Farach-Carson, M.C., and Carson, D.D. (2007). Perlecan - a multi- functional extracellular proteoglycan scaffold. Glycobiology 17, 897–905.

    Article  PubMed  CAS  Google Scholar 

  • Ferreras, M., Felbor, U., Lenhard, T., Olsen, B.R., and Delaisse, J.(2000). Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett. 486, 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Fukai, N., Eklund, L., Marneros, A.G., Oh, S.P., Keene, D.R., Tamarkin, L., Niemela, M., Ilves, M., Li, E., Pihlajaniemi, T., et al. (2002). Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J. 21, 1535–1544.

    Article  PubMed  CAS  Google Scholar 

  • Fuki, I., Iozzo, R.V., and Williams, K.J. (2000). Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J. Biol. Chem. 275, 25742–25750.

    Article  PubMed  CAS  Google Scholar 

  • Gautam, M., Noakes, P.G., Moscoso, L., Rupp, F., Scheller, R.H., Merlie, J.P., and Sanes, J.R. (1996). Defective neuromuscular synaptogenesis in agrin-deficient mice. Cell 85, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Gesemann, M., Brancaccio, A., Schumacher, B., and Ruegg, M.A. (1998). Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue. J. Biol. Chem. 273, 600–605.

    Article  PubMed  CAS  Google Scholar 

  • Ghiselli, G., Eichstetter, I., and Iozzo, R.V. (2001). A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor. Biochem. J. 359, 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Gianazza, E., Wait, R., Begum, S., Eberini, I., Campagnoli, M., Labo, S., and Galliano, M. (2007). Mapping the 5-50-kDa fraction of human amniotic fluid proteins by 2-DE and ESI-MS. Proteomics Clin. Appl. 1, 167–175.

    Article  CAS  Google Scholar 

  • Gonzalez, E.M., Reed, C.C., Bix, G., Fu, J., Zhang, Y., Gopalakrishnan, B., Greenspan, D.S., and Iozzo, R.V. (2005). BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J. Biol. Chem. 280, 7080–7087.

    Article  PubMed  CAS  Google Scholar 

  • González-Iriarte, M., Carmona, R., Pérez-Pomares, J.M., Macías, D., Costell, M., and Munoz-Chápuli, R. (2003). Development of the coronary arteries in a murine model of transposition of great arteries. J. Mol. Cell. Cardio. 35, 795–802.

    Article  CAS  Google Scholar 

  • Grenache, D.G., Zhang, Z., Wells, L.E., Santoro, S.A., Davidson, J.M., and Zutter, M.M. (2006). Wound healing in the α2β1 integrin-deficient mouse: altered keratinocyte biology and dys-regulated matrix metalloproteinase expression. J. Invest. Dermatol. 127, 455–466.

    Article  PubMed  CAS  Google Scholar 

  • Groffen, A.J.A., Buskens, C.A.F., van Kuppevelt, T.H., Veerkamp, J.H., Monnens, L.A.H., and van den Heuvel, L.P.W.J. (1998). Primary structure and high expression of human agrin in basement membranes of adult lung and kidney. Eur. J. Biochem. 254, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Grønborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O.N., Hruban, R.H., Goggins, M.G., et al. (2006). Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteom. 5, 157–171.

    Article  CAS  Google Scholar 

  • Halfter, W., Dong, S., Schurer, B., and Cole, G.J. (1998). Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J. Biol. Chem. 273, 25404–25412.

    Article  PubMed  CAS  Google Scholar 

  • Handler, M., Yurchenco, P.D., and Iozzo, R.V. (1997). Developmental expression of perlecan during murine embryogenesis. Dev. Dyn. 210, 130–145.

    Article  PubMed  CAS  Google Scholar 

  • Hassell, J.R., Yamada, Y., and Arikawa-Hirasawa, E. (2003). Role of perlecan in skeletal development and diseases. Glycoconj. J. 19, 263–267.

    Article  Google Scholar 

  • Hilgenberg, L.G.W., Su, H., Gu, H., O’Dowd, D.K., and Smith, M.A. (2006). α3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 125, 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Hurskainen, M., Eklund, L., Hägg, P.O., Fruttiger, M., Sormunen, R., IIves, M., and Pihlajaniemi, T. (2005). Abnormal maturation of the retinal vasculature in type xVlII collagen/endostatin deficient mice and changes in retinal glial cells due to lack of collagen types XV and XVIII. FASEB J. 19, 1564–1666.

    PubMed  CAS  Google Scholar 

  • Iozzo, R.V. (1994). Perlecan: a gem of a proteoglycan. Matrix Biol. 14, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Iozzo, R.V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652.

    Article  PubMed  CAS  Google Scholar 

  • Iozzo, R.V. (2005). Basement membrane proteoglycans: from cellar to ceiling. Nature Rev. Mol. Cell Biol. 6, 646–656.

    Article  CAS  Google Scholar 

  • Iozzo, R.V., and Murdoch, A.D. (1996). Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598–614.

    PubMed  CAS  Google Scholar 

  • Iozzo, R.V., and San Antonio, J.D. (2001). Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J. Clin. Invest. 108, 349–355.

    Google Scholar 

  • Iozzo, R.V., Cohen, I.R., Grassel, S., and Murdoch, A.D. (1994). The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302, 625–639.

    PubMed  CAS  Google Scholar 

  • Iozzo, R.V., Pillarisetti, J., Sharma, B., Murdoch, A.D., Danielson, K.G., Uitto, J., and Mauviel, A. (1997). Structural and functional characterization of the human perlecan gene promoter. Transcriptional activation by transforming growth factor-p via a nuclear factor 1-binding element. J. Biol. Chem. 272, 5219–5228.

    Article  PubMed  CAS  Google Scholar 

  • Kadenhe-Chiweshe, A., Papa, J., McCrudden, K.W., Frischer, J., Bae, J.-O., Huang, J., Fisher, J., Lefkowitch, J.H., Feirt, N., Rudge, J., et al. (2008). Sustained VEGF blockade results in microenvironmental sequestration of VEGF by tumors and persistent VEGF receptor-2 activation. Mol. Cancer Res. 6, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Karumanchi, S.A., Jha, V., Ramchandran, R., Karihaloo, A., Tsiokas, L., Chan, B., Dhanabai, M., Hanai, J.-C., Venkataraman, G., Shriver, Z., et al. (2001). Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell 7, 811–822.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.-M., Hwang, S., Kim, Y.-M., Pyun, B.-J., Kim, T.-Y., Lee, S.-T., Gho, Y.S., and Kwon, Y.-G. (2002). Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem. 277, 27872–27879.

    Article  PubMed  CAS  Google Scholar 

  • Kim, N., Stiegler, A.L., Cameron, T.O., Hallock, P.T., Gomez, A.M., Huang, J.H., Hubbard, S.R., Dustin, M.L., and Burden, S.J. (2008). Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135, 334–342.

    Article  PubMed  CAS  Google Scholar 

  • Klein, G., Conzelmann, S., Beck, S., Timpl, R., and Muller, C.A. (1995). Perlecan in human bone marrow: a growth-factor presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol. 14, 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Krishna, J., Shah, Z.A., Merchant, M., Klein, J.B., and Gozal, D. (2006). Urinary protein expression patterns in children with sleep-disordered breathing: preliminary findings. Sleep Med. 7, 221–227.

    Article  PubMed  Google Scholar 

  • Kuo, C.J., LaMontagne, K.R., Garcia-Cardena, G., Ackley, B.D., Kalman, D., Park, S., Christofferson, R., Kamihara, J., Ding, Y.-H., Lo, K.-M., et al. (2001). Oligomerization-dependent regulationof motility and morphogenesis by the collagen XVIII NC1/endostatin domain. J. Cell Biol. 152, 1233–1246.

    Article  PubMed  CAS  Google Scholar 

  • Laplante, P., Raymond, M.A., Gagnon, G., Vigneault, N., Sasseville, A.M., Langelier, Y., Bernard, M., Raymond, Y., and Hebert, M.-J. (2005). Novel fibrogenic pathways are activated in response to endothelial apoptosis: implications in the pathophysiology of systemic sclerosis. J. Immunol. 174, 5740–5749.

    PubMed  CAS  Google Scholar 

  • Laplante, P., Raymond, M.-A., Labelle, A., Abe, J.-I., Iozzo, R.V., and Hebert, M.-J. (2006). Perlecan proteolysis induces α2β1 integrin and src-family kinases dependent anti-apoptotic pathway in fibroblasts in the absence of focal adhesion kinase activation. J. Biol. Chem. 281, 30383–30392.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., and Olsen, B.R. (2004). Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am. J. Pathol. 165, 415–424.

    PubMed  CAS  Google Scholar 

  • Lin, W., Burgess, R.W., Dominguez, B., Pfaff, S.L., Sanes, J.R., and Lee, K.-F. (2001). Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S., Maj, M., Bezakova, G., Magyar, J.P., Brenner, H.R., and Ruegg, M.A. (2008). Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc. Natl. Acad. Sci. USA 105, 11406–11411.

    Article  PubMed  Google Scholar 

  • Marneros, A.G., and Olsen, B.R. (2005). Physiological role of collagen XVIII and endostatin. FASEB J. 19, 716–728.

    Article  PubMed  CAS  Google Scholar 

  • Marneros, A.G., Keene, D.R., Hansen, U., Fukai, N., Moulton, K., Goletz, P.L., Moiseyev, G., Pawlyk, B.S., Halfter, W., Dong, S., et al. (2004). Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J. 23, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Marneros, A.G., She, H., Zambarakji, H., Hashizume, H., Connolly, E.J., Kim, I., Gragoudas, E.S., Miller, J.W., and Olsen, B.R. (2007). Endogenous endostatin inhibits choroidal neovascularization. FASEB J. 21, 3809–3818.

    Article  PubMed  CAS  Google Scholar 

  • Mathiak, M., Yenisey, C., Grant, D.S., Sharma, B., and Iozzo, R.V. (1997). A role for perlecan in the suppression of growth and invasion in fibrosarcoma cells. Cancer Res. 57, 2130–2136.

    PubMed  CAS  Google Scholar 

  • Matsumoto-Miyai, K., Sokolowska, E., Zurlinden, A., Gee, C.E., Luscher, D., Hettwer, S., Wolfel, J., Ladner, A.P., Ster, J., Gerber, U., et al. (2009). Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell 136, 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  • Menzel, O., Bekkeheien, R.C., Reymond, A., Fukai, N., Boye, E., Kosztolanyi, G., Aftimos, S., Deutsch, S., Scott, H.S., Olsen, B.R., et al. (2004). Knobloch syndrome: novel mutations in COL18A1, evidence for genetic heterogeneity, and a functionally impaired polymorphism in endostatin. Hum. Mutat. 23, 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Mongiat, M., Taylor, K., Otto, J., Aho, S., Uitto, J., Whitelock, J., and Iozzo, R.V. (2000). The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J. Biol. Chem. 275, 7095–7100.

    Article  PubMed  CAS  Google Scholar 

  • Mongiat, M., Otto, J., Oldershaw, R., Ferrer, F., Sato, J.D., and Iozzo, R.V. (2001). Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J. Biol. Chem. 276, 10263–10271.

    Article  PubMed  CAS  Google Scholar 

  • Mongiat, M., Sweeney, S., San Antonio, J.D., Fu, J., and Iozzo, R.V. (2003). Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 278, 4238–4249.

    Article  PubMed  CAS  Google Scholar 

  • Moulton, K.S., Olsen, B.R., Sonn, S., Fukai, N., Zurakowski, D., and Zeng, X. (2004). Loss of collagen XVIII enhances neovasculari zation and vascular permeability in atherosclerosis. Circulation 110, 1330–1336.

    Article  PubMed  CAS  Google Scholar 

  • Nitkin, R.M., Smith, M.A., Magill, C., Fallon, J.R., Yao, Y.-M.M., Wallace, B.G., and McMahan, U.J. (1987). Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105, 2471–2478.

    Article  PubMed  CAS  Google Scholar 

  • Nugent, M.A., and Iozzo, R.V. (2000). Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Nugent, M.A., Nugent, H.M., Iozzo, R.V., Sanchack, K., and Edelman, E.R. (2000). Perlecan is required to inhibit thrombosis after deep vascular injury and contributes to endothelial cell-mediated inhibition of intimal hyperplasia. Proc. Natl. Acad. Sci. USA 97, 6722–6727.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg, P., Xie, L., and Kalluri, R. (2005). Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967–3979.

    Article  PubMed  CAS  Google Scholar 

  • Oda, O., Shinzato, T., Ohbayashi, K., Takai, I., Kunimatsu, M., Maeda, K., and Yamanaka, N. (1996). Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin. Chim. Acta 255, 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.P., Kamagata, Y., Muragaki, Y., Timmons, S., Ooshima, A., and Olsen, B.R. (1994a). Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc. Natl. Acad. Sci. USA 91, 4229–4233.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.P., Warman, M.L., Seldin, M.F., Cheng, S.-D., Knoll, J.H.M., Timmons, S., and Olsen, B.R. (1994b). Cloning of cDNA and genomic DNA encoding human type xVlII collagen and localization of the a1(XVIII) collagen gene to mouse chromosome 10 and human chromosome 21. Genomics 19, 494–499.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., and Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Article  PubMed  Google Scholar 

  • O’Riordan, E., Orlova, T.N., Mendelev, N., Patschan, D., Kemp, R., Chander, P.N., Hu, R., Hao, G., Gross, S.S., Iozzo, R.V., et al. (2008). Urinary proteomic analysis of chronic renal allograft nephropathy. Proteomics Clin. Appl. 2, 1025–1035.

    Article  CAS  Google Scholar 

  • Raymond, M.-A., Desormeaux, A., Laplante, P., Vigneault, N., Filep, J.G., Landry, K., Pshezhetsky, A.V., and Hebert, M.-J. (2004). Apoptosis of endothelial cells triggers a caspase-dependent anti-apoptotic paracrine loop active on vascular smooth muscle cells. FASEB J. 18, 705–707.

    PubMed  CAS  Google Scholar 

  • Rehn, M., Hintikka, E., and Pihlajaniemi, T. (1994). Primary structure of the a1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the a1(XVIII) chain with its homologue, the a1 (XV) collagen chain. J. Biol. Chem. 269, 13929–13935.

    PubMed  CAS  Google Scholar 

  • Rehn, M., Veikkola, T., Kukk-Valdre, E., Nakamura, H., Ilmonen, M., Lombardo, C.R., Pihlajaniemi, T., Alitalo, K., and Vuori, K. (2001). Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA 98, 1024–1029.

    Article  PubMed  CAS  Google Scholar 

  • Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wolfel, J., Luscher, D., Zurlinden, A., Stephan, A., Ahmed, S., et al. (2007). Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J. 21, 3468–3478.

    Article  PubMed  CAS  Google Scholar 

  • Reiland, J., Sanderson, R.D., Waguespack, M., Barker, S.A., Long, R., Carson, D.D., and Marchetti, D. (2004). Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J. Biol. Chem. 279, 8047–8055.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, C.J., Mulloy, B., Gallagher, J.T., and Stringer, S.E. (2006). VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J. Biol. Chem. 281, 1731–1740.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, M., Morita, H., Sormunen, R., Airenne, S., Kreivi, M., Wang, L., Fukai, N., Olsen, B.R., Tryggvason, K., and Soininen, R. (2003). Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Saarela, J., Ylikarppa, R., Rehn, M., Purmonen, S., and Pihlajaniemi, T. (1998). Complete primary structure of two variant forms of 512 Basement Membrane Proteoglycans in Cancer and Angiogenesis human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol. 16, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Fukai, N., Mann, K., Gohring, W., Olsen, B.R., and Timpl, R. (1998). Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 17, 4249–4256.

    Article  PubMed  CAS  Google Scholar 

  • Sauter, B.V., Martinet, O., Zhang, W.-J., Mandeli, J., and Woo, S.L.C. (2001). Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastasis. Proc. Natl. Acad. Sci. USA 97, 4802–4807.

    Article  Google Scholar 

  • Savoré, C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., Zhau, H.E., Chung, L.W., Carson, D.D., and Farach-Carson, M.C. (2005). Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin. Exp. Metastasis 22, 377–390.

    Article  PubMed  CAS  Google Scholar 

  • Scotton, P., Bleckmann, D., Stebler, M., Sciandra, F., Brancaccio, A., Meier, T., Stetefeld, J., and Ruegg, M.A. (2006). Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J. Biol. Chem. 281, 36835–36845.

    Article  PubMed  CAS  Google Scholar 

  • Senger, D.R., Perruzzi, C.A., Streit, M., Koteliansky, V.E., de Fougerolles, A.R., and Detmar, M. (2002). The a1p1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am. J. Pathol. 160, 195–204.

    PubMed  CAS  Google Scholar 

  • Seppinen, L., Sormunen, R., Soini, Y., Elamaa, H., Heljasvaara, R., and Pihlajaniemi, T. (2008). Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing. Matrix Biol. 27, 535–546.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, B., Handler, M., Eichstetter, I., Whitelock, J., Nugent, M.A., and Iozzo, R.V. (1998). Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J. Clin. Invest. 102, 1599–1608.

    Article  PubMed  CAS  Google Scholar 

  • Shichiri, M., and Hirata, Y. (2001). Antiangiogenesis signals by endostatin. FASEB J. 15, 1044–1053.

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar, A., Sugimoto, H., Yang, C., Lively, J., Zeisberg, M., and Kalluri, R. (2003). Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by avp3 and a5p1 integrins. Proc. Natl. Acad. Sci. USA 100, 4766–4771.

    Article  PubMed  CAS  Google Scholar 

  • Sund, M., Zeisberg, M., and Kalluri, R. (2005). Endogenous stimulators and inhibitors of angiogenesis in gastrointestinal cancers: basic science to clinical application. Gastroenterology 129, 2076–2091.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, O.T., Sertie, A.L., Der, K.V., Kok, F., Carpenter, M., Murray, J., Czeizel, A.E., Kliemann, S.E., Rosemberg, S., Monteiro, M., et al. (2002). Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am. J. Hum. Genet. 71, 1320–1329.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, S.M., DiLullo, G., Slater, S.J., Martinez, J., Iozzo, R.V., Lauer-Fields, J.L., Fields, G.B., and San Antonio, J.D. (2003). Angiogenesis in collagen I requires α2β1 ligation of a GFP*GER sequence and possible p38 MAPK activation and focal adhesion disassembly. J. Biol. Chem. 278, 30516–30524.

    Article  PubMed  CAS  Google Scholar 

  • Tátrai, P., Dudás, J., Batmunkh, E., Máthé, M., Zalatnai, A., Schaff, Z., Ramadori, G., and Kovalszky, I. (2006). Agrin, a novel basement membrane component in human rat and liver, accumulates in cirrhosis and hepatocellular carcinoma. Lab. Invest. 86, 1149–1160.

    PubMed  Google Scholar 

  • Thadikkaran, L., Crettaz, D., Siegenthaler, M.A., Gallot, D., Sapin, V., Iozzo, R.V., Queloz, P.A., Schneider, P., and Tissot, J.D. (2005). The role of proteomics in the assessment of premature rupture of fetal membranes. Clin. Chim. Acta 360, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Tran, P.-K., Tran-Lundmark, K., Soininen, R., Tryggvason, K., Thyberg, J., and Hedin, U. (2004). Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ. Res. 94, 550–558.

    Article  PubMed  CAS  Google Scholar 

  • Tsangaris, G.T., Karamessinis, P., Kolialexi, A., Garbis, S.D., Antsaklis, A., Mavrou, A., and Fountoulakis, M. (2006). Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 6, 4410–4419.

    Article  PubMed  CAS  Google Scholar 

  • Utriainen, A., Sormunen, R., Kettunen, M., Carvalhaes, L.S., Sajanti, E., Eklund, L., Kauppinen, R., Kitten, G.T., and Pihlajaniemi, T. (2004). Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Human Mol. Gen. 13, 2089–2099.

    Article  CAS  Google Scholar 

  • Verbeek, M.M., Otte-Holler, I., van den Born, J., van den Heuvel, L.P.W.J., David, G., Wesseling, P., and de Waal, R.M. (1999). Agrin is a major heparan sulfate proteogl can accumulating in Alzheimer’s disease brain. Am. J. Pathol. 155, 2115–2125.

    PubMed  CAS  Google Scholar 

  • Vuadens, F., Benay, C., Crettaz, D., Gallot, D., Sapin, V., Schneider, P., Binevenut, W.-V., Lémery, D., Quadroni, M., Dastugue, B., et al. (2003). Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach. Proteomics 3, 1521–1525.

    Article  PubMed  CAS  Google Scholar 

  • Warth, A., Kröger, S., and Wolburg, H. (2004). Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 107, 311–318.

    Article  PubMed  CAS  Google Scholar 

  • West, L., Govindraj, P., Koob, T.J., and Hassell, J.R. (2006). Changes in perlecan during chondrocyte differentiation in the fetal bovine rib growth plate. J. Orthop. Res. 24, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  • Whitelock, J.M., and Iozzo, R.V. (2005). Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105, 2745–2764.

    Article  PubMed  CAS  Google Scholar 

  • Whitelock, J.M., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin and heparanases. J. Biol. Chem. 271, 10079–10086.

    Article  PubMed  CAS  Google Scholar 

  • Whitelock, J.M., Graham, L.D., Melrose, J., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1999). Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol. 18, 163–178.

    Article  PubMed  CAS  Google Scholar 

  • Whitelock, J.M., Melrose, J., and Iozzo, R.V. (2008). Diverse cell signaling events modulated by perlecan. Biochemistry 47, 11174–11183.

    Article  PubMed  CAS  Google Scholar 

  • Wickström, S.A., Alitalo, K., and Keski-Oja, J. (2005). Endostatin signaling and regulation of endothelial cell-matrix interactions. Adv. Cancer Res. 94, 197–229.

    Article  PubMed  Google Scholar 

  • Winzen, U., Cole, G.J., and Halfter, W. (2003). Agrin is a chimeric proteoglycan with the attachment sites for heparan sulfate/chondroitin sulfate located in two multiple serine-glycine clusters. J. Biol. Chem. 278, 30106–30114.

    Article  PubMed  CAS  Google Scholar 

  • Witmer, A.N., van den Born, J., Vrensen, G.F.J.M., and Schlingemann, R.O. (2001). Vascular localization of heparan sulfate proteoglycans in retinas of patients with diabetes mellitus and in VEGF-induced retinopathy using domain-specific antibodies. Curr. Eye Res. 22, 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Woodall, B.P., Nystrom, A., Iozzo, R.A., Eble, J.A., Niland, S., Krieg, T., Eckes, B., Pozzi, A., and Iozzo, R.V. (2008). Integrin α2β1 is the required receptor for endorepellin angiostatic activity. J. Biol. Chem. 283, 2335–2343.

    Article  PubMed  CAS  Google Scholar 

  • Ylikärppä, R., Eklund, L., Sormunen, R., Kontiola, A.I., Utriainen, A., Määttä, M., Fukai, N., and Olsen, B.R. (2003). Lack of type XVIII collagen results in anterior ocular defects. FASEB J. 17, 2257–2259.

    PubMed  Google Scholar 

  • Yurchenco, P.D., Amenta, P.S., and Patton, B.L. (2004). Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 22, 521–538.

    Article  PubMed  CAS  Google Scholar 

  • Zatterstrom, U.K., Felbor, U., Fukai, N., and Olsen, B.R. (2000). Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct. Funct. 25, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Wang, Y., Chu, Y., Su, L., Gong, Y., Zhang, R., and Xiong, S. (2006). Agrin is involved in lymphocytes activation that is mediated by a-dystroglycan. FASEB J. 20, 50–58.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Ramirez, N.E., Yankeelov, T.E., Li, Z., Ford, L.E., Qi, Y., Pozzi, A., and Zutter, M.M. (2008). α2β1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood 111, 1980–1988.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., Wang, J., Cao, R., Morita, H., Soininen, R., Chan, K.M., Liu, B., Cao, Y., and Tryggvason, K. (2004). Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699–4702.

    Article  PubMed  CAS  Google Scholar 

  • Zoeller, J.J., and Iozzo, R.V. (2008). Proteomic profiling of endorepellin angiostatic activity on human endothelial cells. Proteome Sci. 6, 7.

    Article  PubMed  CAS  Google Scholar 

  • Zoeller, J.J., McQuillan, A., Whitelock, J., Ho, S.-Y., and Iozzo, R.V. (2008). A central function for perlecan in skeletal muscle and cardiovascular development. J. Cell Biol. 181, 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Zorick, T.S., Mustacchi, Z., Bando, S.Y., Zatz, M., Moreira-Filho, C.A., Olsen, B., and Passos-Bueno, M.R. (2001). High serum endostatin levels in Down syndrome: Implications for improved treatment and prevention of solid tumors. Eur. J. Hum. Genet. 9, 811–814.

    Article  PubMed  CAS  Google Scholar 

  • Zweers, M.C., Davidson, J.M., Pozzi, A., Hallinger, R., Janz, K., Quondamatteo, F., Leutgeb, B., Krieg, T., and Eckes, B. (2007). Integrin α2β1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J. Invest. Dermatol. 127, 467–478.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato V. Iozzo.

About this article

Cite this article

Iozzo, R.V., Zoeller, J.J. & Nyström, A. Basement membrane proteoglycans: Modulators Par Excellence of cancer growth and angiogenesis. Mol Cells 27, 503–513 (2009). https://doi.org/10.1007/s10059-009-0069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0069-0

Keywords

Navigation