Skip to main content
Log in

Sustained viral activity of epstein-Barr virus contributes to cellular immortalization of lymphoblastoid cell lines

  • Published:
Molecules and Cells

Abstract

EBV-transformed lymphoblastoid cell lines (LCLs) are used as a resource for human genetic, immunological, and pharmacogenomic studies. We investigated the biological activity of 20 LCL strains during continuous long-term subculture up to a passage number of 160. Out of 20 LCL strains, 17 proliferated up to a passage number of 160, at which point LCLs are generally considered as “immortalized”. The other three LCL strains lost the ability to proliferate at an average passage number of 41, during which these LCLs may have undergone cellular crisis. These non-immortal LCL strains exhibited no telomerase activity, decreased EBV gene expression, and a lower copy number of the EBV genome and mitochondrial DNA when compared with immortal LCLs. Thus, this study suggests that sustained EBV viral activity as well as telomerase activity may be required for complete LCL immortalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belair, C.D., Yeager, T.R., Lopez, P.M., and Reznikoff, C.A (1997). Telomerase activity: A biomarker of cell proliferation, not malignant transformation. Proc. Natl. Acad. Sci. USA 94, 13677–13682.

    Article  PubMed  CAS  Google Scholar 

  • Cahir-McFarland, E.D., Carter, K., Rosenwald, A., Giltnane, J.M., Henrickson, S.E., Staudt, L.M., and Kieff, E. (2004). Role of NF-{kappa}B in cell survival and transcription of latent membrane protein 1-expressing or epstein-Barr virus latency III-infected Cells. J. Virol. 78, 4108–4119.

    Article  PubMed  CAS  Google Scholar 

  • Carter, K.L., Cahir-McFarland, E., and Kieff, E. (2002). Epstein-Barr virus-induced changes in B-lymphocyte gene expression. J. Virol. 76, 10427–10436.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A, Johannsen, E., Maruo, S., Cahir-McFarland, E., Illanes, D., Davidson, D., and Kieff, E. (2003). EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virus-transformed lymphoblast growth. J. Virol. 77, 999–1010.

    Article  PubMed  CAS  Google Scholar 

  • Eliopoulos, A.G., and Young, L.S. (2001). LMP1 structure and signal transduction. Semin. Cancer Biol. 11, 435–144.

    Article  CAS  Google Scholar 

  • Grimm, T., Schneider, S., Naschberger, E., Huber, J., Guenzi, E., Kieser, A., Reitmeir, P., Schulz, T.F., Morris, C.A., and Stürzl, M. (2005). EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood 105, 3263–3269.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, W.C. (2002). Immortalization and transformation of human cells. Mol. Cells 13, 351–361.

    PubMed  CAS  Google Scholar 

  • Hei, T.K., Persaud, R., Zhou, H., and Suzuki, M. (2004) Genotoxicity in eyes of bystander cells. Mutat. Res. 568, 111–120.

    PubMed  CAS  Google Scholar 

  • Henkel, T., Ling, P.D., Hayward, S.D., and Peterson M.G. (1994). Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa, Science 265, 92–95.

    Article  PubMed  CAS  Google Scholar 

  • Hur, D.Y., Lee, M.H., Kim, J.W., Kim, J.H., Shin, Y.K, Rho. J.K., Kwack, K.B., Lee, W.J., and Han, B.G. (2005). CD19 signalling improves the Epstein-Barr virus-induced immortalization of human B cell. Cell Prolif. 38, 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, J.P., Shim, S.M., Nam, H.Y., Baik, S.Y., Kim. J.W., and Han, B.G. (2007). Copy number increase of 1p36.33 and mitochondrial genome amplification in Epstein-Barr virus-transformed lymphoblastoid cell lines. Cancer Genet. Cytogenet. 173, 122–130.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, J.P., Kim, J.W., Park, B., Nam, H.Y., Shim, S.M., Lee, M.H., and Han, B.G.. (2008) Identification of tumor necrosis factor signaling-related proteins during Epstein-Barr virus-induced B cell transformation. Acta Virologica 52, 151–159.

    Google Scholar 

  • Johannsen, E., Koh, E., Mosialos, G., Tong, X., Kieff, E., and Grossman, S.R. (1995). Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol. 69, 253–262.

    PubMed  CAS  Google Scholar 

  • Johannsen, E., Miller, C.L, Grossman, S.R., and Kieff, E. (1996). EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. J. Virol. 70, 4179–4183.

    PubMed  CAS  Google Scholar 

  • Kamranvar, S.A., Gruhne, B., Szeles, A, and Masucci, M.G. (2007). Epstein-Barr virus promotes genomic instability in Burkitt’s lymphoma. Oncogene 26, 5115–5123.

    Article  PubMed  CAS  Google Scholar 

  • Kieff, E., and Rickinson, A.B. (2001). In Fields Virology, D.M. Knipe, and P.M. Howley, eds. (Lippincott, Philadelphia, USA). Vol. 2, pp. 2511–2628.

  • Kilger, E., Kieser, A., Baumann, M., and Hammerschmidt, W. (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17, 1700–1709.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.J., Lee, H.J., Park, M.H., Cha, S.H., Kim, K.S., Kim, H.T., Kimm, K., Oh, B., and Lee, J.Y. (2006). SNP identification, link-age disequilibrium, and haplotype analysis for a 200-kb genomic region in a Korean population. Genomics 88, 535–540.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.P., Cassar, L, Pinto, A, and Li, H. (2006). Mechanisms of cell immortalization mediated by EB viral activation of telomerase in nasopharyngeal carcinoma. Cell Res. 16, 809–817.

    Article  PubMed  CAS  Google Scholar 

  • McClain, K., Estrov, Z., Raju, U., Kelley, P.K., and Aggarwal, B.B. (1997). Epstein-Barr virus EBNA-2 gene expression enhances lymphotoxin production by B lymphocytes. Methods 11, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Mei, Y.P., Zhu, X.F., Zhou, J.M., Huang, H., Deng, R., and Zeng, Y.X. (2006). siRNA targeting LMP1-induced apoptosis in EBV-positive lymphoma cells is associated with inhibition of telomerase activity and expression. Cancer Lett. 232, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Mochida, A, Gotoh, E., Senpuku, H., Harada, S., Kitamura, R., Takahashi, T., and Yanagi, K. (2005). Telomere size and telomerase activity in Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt’s lymphoma cell lines. Arch. Virol. 150, 2139–2150

    Article  PubMed  CAS  Google Scholar 

  • Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., et al. (2006). Global variation in copy number in the human genome. Nature 444, 444–454.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, E.S., Lin, J., and Kieff, E. (1996). The ami no-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J. Virol. 70, 3068–3074.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Revenga, L., Mila, M., Rosenberg, C., Lamb, A., and Lee, C. (2007). Structural variation in the human genome: the impact of copy number variants on clinical diagnosis. Genet. Med. 9, 600–606.

    Article  PubMed  CAS  Google Scholar 

  • Saito, N., Courtois, G., Chiba, A., Yamamoto, N., Nitta, T., Hironaka, N., Rowe, M., Yamamoto, N., and Yamaoka, S. (2003). Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane protein 1 activate NF-{kappa}B through distinct signaling pathways in fibroblast cell lines. J. Biol. Chem. 278, 46565–46575.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y., and Takada, K. (1994). Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitfs lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J. Virol. 68, 6069–6073.

    PubMed  CAS  Google Scholar 

  • Spender, L.C., Cornish, G.H., Sullivan, A, and Farrell, P.J. (2002). Expression of transcription factor AML-2 (RUNX3, CBFalpha-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J. Virol. 76, 4919–4927.

    Article  PubMed  CAS  Google Scholar 

  • Srinivas, S.K., and Sixbey, J.W. (1995). Epstein-Barr virus induction of recombinase-activating genes RAG1 and RAG2. J. Virol. 69, 8155–8158.

    PubMed  CAS  Google Scholar 

  • Sugimoto, M., Furuichi, Y., Ide, T., and Goto, M. (1999). Incorrect us of “immortalization” for B-lymphoblastoid cell lines transformed by Epstein-Barr virus. J. Virol. 73, 9690–9691.

    PubMed  CAS  Google Scholar 

  • Sugimoto, M., Tahara, H., Ide, T., and Furuichi, Y. (2004). Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res. 64, 3361–3364.

    Article  PubMed  CAS  Google Scholar 

  • Sylla, B.S., Hung, S.C., Davidson, D.M., Hatzivassiliou, E., Malinin, N.L., Wallach, D., Gilmore, T.D., Kieff, E., and Mosialos, G. (1998). Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc. Natl. Acad. Sci. USA 95, 10106–10111.

    Article  PubMed  CAS  Google Scholar 

  • Toda, T., and Sugimoto, M. (2003). Proteome analysis of Epstein-Barr virus-transformed B-lymphoblasts and the proteome data-base. J. Chromatography B. 787, 197–206.

    Article  CAS  Google Scholar 

  • Yoo, Y.K., Ke, X., Hong, S., Jang, H.Y., Park, K., Kim, S., Ahn, T., Lee, Y.D., Song, O., Rho, N.Y., et al. (2006). Fine-scale map of encyclopedia of DNA elements regions in the Korean population. Genetics 774, 491–497.

    Article  CAS  Google Scholar 

  • Young, L.S., and Rickinson, A.B. (2004). Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L, Hong, K, Zhang, J., and Pagano, J.S. (2004). Multiple signal transducers and activators of transcription are induced by EBV LMP-1. Virology 323, 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, B., Maruo, S., Cooper, A., Chase, M.R., Johannsen, E., Kieff, E., and Cahir-McFarland, E. (2006). RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc. Natl. Acad. Sci. USA 103, 1900–1905.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bok-Ghee Han.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Jeon, JP., Nam, HY., Shim, SM. et al. Sustained viral activity of epstein-Barr virus contributes to cellular immortalization of lymphoblastoid cell lines. Mol Cells 27, 143–148 (2009). https://doi.org/10.1007/s10059-009-0018-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0018-y

Keywords

Navigation