Skip to main content
Log in

Regulation of Notch1/NICD and Hes1 expressions by GSK-3α/β

  • Published:
Molecules and Cells

Abstract

Notch signaling is controlled at multiple levels. In particular, stabilized Notch receptor activation directly affects the transcriptional activations of Notch target genes. Although some progress has been made in terms of defining the regulatory mechanism that alters Notch stability, it has not been determined whether Notch1/NICD stability is regulated by GSK-3α. Here, we show that Notch1/NICD levels are significantly regulated by GSK-3β and by GSK-3α. Treatment with LiCl (a specific GSK-3 inhibitor) or the overexpression of the kinase-inactive forms of GSK-3α/β significantly increased Notch1/NICD levels. Endogenous NICD levels were also increased by either GSK-3α/β- or GSK-3α-specific siRNA. Furthermore, it was found that GSK-3α binds to Notch1. Deletion analysis showed that at least three Thr residues in Notch1 (Thr-1851, 2123, and 2125) are critical for its response to LiCl, which increased not only the transcriptional activity of endogenous NICD but also Hes1 mRNA levels. Taken together, our results indicate that GSK-3α is a negative regulator of Notch1/NICD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asuni, A.A., Hooper, C., Reynolds, C.H., Lovestone, S., Anderton, B.H., and Killick, R. (2006). GSK-3alpha exhibits beta-catenin and tau directed kinase activities that are modulated by Wnt. Eur. J. Neurosci. 24, 3387–3392.

    Article  PubMed  Google Scholar 

  • Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J. R., Cumano, A., Roux, P., Black, R.A., and Israel, A. (2000). A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.

    Article  CAS  PubMed  Google Scholar 

  • Doble, B.W., Patel, S., Wood, G.A., Kockeritz, L.K., and Woodgett, J.R. (2007). Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev. Cell 12, 957–971.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa, L., Ingles-Esteve, J., Aguilera, C., and Bigas, A. (2003). Phosphorylation by glycogen synthase kinase-3 beta downregulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem. 278, 32227–32235.

    Article  CAS  PubMed  Google Scholar 

  • Foltz, D.R., Santiago, M.C., Berechid, B.E., and Nye, J.S. (2002). Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr. Biol. 12, 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  • Goto, H., Kawano, K., Kobayashi, I., Sakai, H., and Yanagisawa, S. (2002). Expression of cyclin D1 and GSK-3beta and their predictive value of prognosis in squamous cell carcinomas of the tongue. Oral Oncol. 38, 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Grimes, C.A., and Jope, R.S. (2001). The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65, 391–426.

    Article  CAS  PubMed  Google Scholar 

  • Hoeflich, K.P., Luo, J., Rubie, E.A., Tsao, M.S., Jin, O., and Woodgett, J.R. (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, K., Nikolakaki, E., Plyte, S.E., Totty, N.F., and Woodgett, J.R. (1993). Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J. 12, 803–808.

    CAS  PubMed  Google Scholar 

  • Iso, T., Kedes, L., and Hamamori, Y. (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell Physiol. 194, 237–255.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Ki, H., Park, H.S., and Kim, K. (2005). Presenilin-1 D257A and D385A mutants fail to cleave Notch in their endoproteolyzed forms, but only presenilin-1 D385A mutant can restore its gamma-secretase activity with the compensatory overexpression of normal C-terminal fragment. J. Biol. Chem. 280, 22462–22472.

    Article  CAS  PubMed  Google Scholar 

  • Koivisto, L., Jiang, G., Hakkinen, L., Chan, B., and Larjava, H. (2006). HaCaT keratinocyte migration is dependent on epidermal growth factor receptor signaling and glycogen synthase kinase-3alpha. Exp. Cell Res. 312, 2791–2805.

    Article  CAS  PubMed  Google Scholar 

  • Kopan, R. (2002). Notch: a membrane-bound transcription factor. J. Cell Sci. 115, 1095–1097.

    CAS  PubMed  Google Scholar 

  • Lau, K.F., Miller, C.C., Anderton, B.H., and Shaw, P.C. (1999). Expression analysis of glycogen synthase kinase-3 in human tissues. J. Pept. Res. 54, 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.C., Tsai, J.N., Liao, P.Y., Tsai, W.Y., Lin, K.Y., Chuang, C.C., Sun, C.K., Chang, W.C., and Tsai, H.J. (2007). Glycogen synthase kinase 3 alpha and 3 beta have distinct functions during cardiogenesis of zebrafish embryo. BMC Dev. Biol. 7, 93.

    Article  PubMed  Google Scholar 

  • Liao, X., Thrasher, J.B., Holzbeierlein, J., Stanley, S., and Li, B. (2004). Glycogen synthase kinase-3beta activity is required for androgen-stimulated gene expression in prostate cancer. Endocrinology 145, 2941–2949.

    Article  CAS  PubMed  Google Scholar 

  • Logeat, F., Bessia, C., Brou, C., LeBail, O., Jarriault, S., Seidah, N.G., and Israel, A. (1998). The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA 95, 8108–8112.

    Article  CAS  PubMed  Google Scholar 

  • Phiel, C.J., Wilson, C.A., Lee, V.M., and Klein, P.S. (2003). GSK-3alpha regulates production of Alzheimer’s disease amyloidbeta peptides. Nature 423, 435–439.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, P.C., Davies, A.F., Lau, K.F., Garcia-Barcelo, M., Waye, M.M., Lovestone, S., Miller, C.C., and Anderton, B.H. (1998). Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and -3 beta encoding genes. Genome 41, 720–727.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q.M., Fiol, C.J., DePaoli-Roach, A.A., and Roach, P.J. (1994). Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J. Biol. Chem. 269, 14566–14574.

    CAS  PubMed  Google Scholar 

  • Woodgett, J.R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431–2438.

    CAS  PubMed  Google Scholar 

  • Yao, H.B., Shaw, P.C., Wong, C.C., and Wan, D.C. (2002). Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. J. Chem. Neuroanat. 23, 291–297.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwonseop Kim.

About this article

Cite this article

Jin, Y.H., Kim, H., Oh, M. et al. Regulation of Notch1/NICD and Hes1 expressions by GSK-3α/β. Mol Cells 27, 15–19 (2009). https://doi.org/10.1007/s10059-009-0001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0001-7

Keyword

Navigation