Skip to main content
Log in

Energy transfer studies in krypton-xenon mixtures excited in a cooled DC discharge

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The VUV spectrum of gaseous mixtures of krypton with a small amount of xenon added was investigated in the range 115–200 nm. The mixtures were excited in a capillary DC discharge where the capillary could be cooled by using liquid nitrogen. The mixed molecule band around the Xe I resonance line at λ = 147 nm and the mixed molecule continuum to the long wavelength side from the line were analysed. The band around λ = 147 nm was identified as transitions between a weakly bound excited state and the weakly bound ground state of XeKr molecules. When cooling the capillary wall, the appearance of the Xe2 continuum was observed. The effect is ascribed to energy transfer between molecular states as a consequence of radiation trapping in the band around λ = 147 nm. The role of the mixed molecule in the formation of the VUV spectrum of the gas mixture is discussed and underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gedanken, J. Jortner, B. Raz, A. Szoke, J. Chem. Phys. 57, 3456 (1972).

    Article  ADS  Google Scholar 

  2. O. Cheshnovsky, B. Raz, J. Jortner, J. Chem. Phys. 59, 3301 (1973).

    Article  ADS  Google Scholar 

  3. Y. Salamero, A. Birot, H. Brunet, H. Dijols, J. Galy, P. Millet, J.P. Montagne, J. Chem. Phys. 74, 288 (1981).

    Article  ADS  Google Scholar 

  4. J.D. Cook, P.K. Leichner, Phys. Rev. A 31, 90 (1985).

    Article  ADS  Google Scholar 

  5. J.D. Cook, P.K. Leichner, Phys. Rev. A 43, 1614 (1991).

    Article  ADS  Google Scholar 

  6. N.A. Kryukov, M.A. Chaplygin, Opt. Spectrosc. 82, 510 (1997).

    ADS  Google Scholar 

  7. E.T. Verkhovtseva, A.E. Ovechkin, Opt. Spectrosc. 47, 117 (1979).

    ADS  Google Scholar 

  8. G. Nowak, J. Fricke, J. Phys. B: At. Mol. Phys. 18, 1355 (1985).

    Article  ADS  Google Scholar 

  9. A.G. Belov, A.D. Klementov, S.A. Pendyur, I.Ya. Fugol, E.M. Yurtaeva, Opt. Spectrosc. 61, 601 (1986).

    ADS  Google Scholar 

  10. P. Laporte, P. Gurtler, E. Morikawa, R. Reininger, V. Saile, Europhys. Lett. 9, 533 (1989).

    Article  ADS  Google Scholar 

  11. A.L. Zagrebin, N.A. Pavlovskaya, Opt. Spectrosc. 69, 320 (1990).

    ADS  Google Scholar 

  12. A.Z. Devdariani, A.L. Zagrebin, Opt. Spectrosc. 72, 309 (1992).

    ADS  Google Scholar 

  13. A.L. Zagrebin, S.I. Tserkovnyi, Chem. Phys. Lett. 239, 136 (1995).

    Article  ADS  Google Scholar 

  14. D.E. Freeman, K. Yoshino, Y. Tanaka, J. Chem. Phys. 67, 3462 (1977).

    Article  ADS  Google Scholar 

  15. M.C. Castex, J. Chem. Phys. 66, 3854 (1977).

    Article  ADS  Google Scholar 

  16. J.E. Velazco J.H. Kolts, D.W. Setser, J. Chem. Phys. 69, 4357 (1978).

    Article  ADS  Google Scholar 

  17. R. Turner, Phys. Rev. 158, 121 (1967).

    Article  ADS  Google Scholar 

  18. Y. Salamero, A. Birot, H. Brunet, J. Galy, P. Millet, J. Chem. Phys. 80, 4774 (1984).

    Article  ADS  Google Scholar 

  19. P.R. Timpson, J.M. Anderson, Can. J. Phys. 70, 380 (1979).

    Google Scholar 

  20. W. Wieme, M. Vanmarcke, Phys. Lett. A 72, 215 (1979).

    Article  ADS  Google Scholar 

  21. Y. Salamero, A. Birot, H. Brunet, J.N. Foulquier, J. Galy, P. Millet, M. Rouzaud, J.L. Teyssier, J. Phys. B: At. Mol. Opt. Phys. 21, 2015 (1988).

    Article  ADS  Google Scholar 

  22. P.K. Leichner, R.J. Ericson, Phys. Rev. A 9, 251 (1974).

    Article  ADS  Google Scholar 

  23. R. Boucique, P. Mortier, J. Phys. D: Appl. Phys. 3, 1905 (1970).

    Article  ADS  Google Scholar 

  24. T. Oka, K.V.S. Rama Rao, J.L. Redpath, R.F. Firestone, J. Chem. Phys. 61, 4740 (1974).

    Article  ADS  Google Scholar 

  25. J.W. Keto, R.E. Gleason, T.D. Bonifield, G.K. Walters, F.K. Soley, Chem. Phys. Lett. 42, 125 (1976).

    Article  ADS  Google Scholar 

  26. Y. Salamero, A. Birot, H. Brunet, J. Galy, P. Millet, J.P. Montagne, J. Phys. B: At. Mol. Opt. Phys. 12, 419 (1979).

    Article  ADS  Google Scholar 

  27. A.V. Phelps, Phys. Rev. 114, 1011 (1958).

    Article  ADS  Google Scholar 

  28. R. Turner, Phys. Rev. 140, A426 (1965).

    Article  ADS  Google Scholar 

  29. P. Moutard, P. Laporte, J.-L. Subtil, N. Damany, H. Damany, J. Chem. Phys. 88, 7485 (1988).

    Article  ADS  Google Scholar 

  30. G. Gerasimov, B. Krylov, G. Zvereva, R. Hallin, A. Arnesen, F. Heijkenskjold, Opt. Spectrosc. 81, 857 (1996).

    ADS  Google Scholar 

  31. C.W. Werner, E.V. George, P.W. Hoff, C.K. Rhodes, IEEE J. Quantum Electrn. QE-13, 769 (1977).

    Article  ADS  Google Scholar 

  32. G. Gerasimov, B. Krylov, A. Loginov, G. Zvereva, R. Hallin, A. Arnesen, F. Heijkenskjold, Appl. Phys. B 66, 81 (1998).

    Article  ADS  Google Scholar 

  33. R.E. Huffman, J.C. Larrabee, Y. Tanaka, Appl. Opt. 4, 1581 (1965).

    Article  ADS  Google Scholar 

  34. Y. Tanaka, K. Yoshino, D.E. Freeman, J. Chem. Phys. 59, 5160 (1973).

    Article  ADS  Google Scholar 

  35. M.V. Bobetic, J.A. Barker, J. Chem. Phys. 64, 2367 (1976).

    Article  ADS  Google Scholar 

  36. T.D. Bonifield, F.H.K. Rambow, G.K. Walters, M.V. McCusker, D.C. Lorents, R.A. Gutcheck, J. Chem. Phys. 72, 2914 (1980).

    Article  ADS  Google Scholar 

  37. M.-C. Castex, J. Chem. Phys. 74, 759 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hallin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, B., Gerasimov, G., Morozov, A. et al. Energy transfer studies in krypton-xenon mixtures excited in a cooled DC discharge. Eur. Phys. J. D 8, 227–239 (2000). https://doi.org/10.1007/s100530050031

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530050031

PACS

Navigation