Skip to main content
Log in

Emergency medicine in space

Notfallmedizin im Weltraum

  • Leitthema
  • Published:
Notfall + Rettungsmedizin Aims and scope Submit manuscript

Abstract

Background

The management of severe medical events during spaceflight represents an exceptional challenge. Thanks to the intense medical screening performed during astronaut selection, significant medical problems have remained uncommon during training and space missions, despite some 125 person-years of cumulated presence in space. The risk of severe medical events, particularly during long-term missions, e.g. to Mars, is nevertheless significant. Many gaps still remain in our understanding of the human response to the space environment and several critical risks associated with interplanetary space travel—such as protection against radiation exposure or delivery of autonomous medical care—remain unresolved.

Results

Both the expected medical conditions and the acute care capabilities differ greatly between Earth and space. While the options in modern medical facilities on the ground are potentially limitless, the equipment and immediate expertise available in space are very limited. For this reason, an emphasis is put on prevention of emergencies. Even after a successful initial stabilisation in low Earth orbit, postresuscitation care would prove problematic. The International Space Station (ISS) does not have the capability to deliver prolonged life support. Furthermore, evacuation from low Earth orbit with current capabilities may not be possible for an unstable, critically ill or intubated and ventilated patient, because of limited volume in the Soyuz capsule and the high deceleration profile.

Conclusion

Future space exploration missions will push back the limits of human experience in maintaining health and performance of crew members. Many issues will have to be addressed before humanity can venture beyond low Earth orbit with an acceptable level of risk.

Zusammenfassung

Hintergrund

Die Behandlung schwerwiegender medizinischer Vorfälle während eines Raumflugs stellt eine außergewöhnliche Herausforderung dar. Dank der intensiven medizinischen Untersuchungen in der Phase der Kandidatenauswahl sind signifikante medizinische Probleme während des Trainings und der Weltraummissionen bisher selten, obwohl Raumfahrer kumuliert bereits 125 Personenjahre im All verbracht haben. Das Risiko schwerwiegender medizinischer Ereignisse ist dennoch erheblich, besonders bei Langzeitmissionen wie z. B. zum Mars. Es gibt noch viele Lücken in unserem Verständnis der menschlichen Reaktion auf die Weltraumbedingungen und verschiedener kritischer Risiken der interplanetaren Raumfahrt, wie z.B. beim Schutz vor Strahlenexposition oder der autonomen medizinischen Versorgung.

Ergebnisse

Sowohl die zu ­erwartenden medizinischen Beschwerden als auch die akute Versorgungskapazität sind auf der Erde und im Weltraum grundsätzlich unterschiedlich. Während die modernen medizinischen Möglichkeiten auf der Erde potenziell unbegrenzt sind, sind die Ausrüstung und das unmittelbar verfügbare Know-how im Weltraum sehr begrenzt. Daher konzentriert man sich auf die Prävention von Notfällen. Selbst nach einer erfolgreichen initialen Stabilisation wäre eine postreanimative Versorgung im erdnahen Orbit problematisch. Auf der internationalen Raumstation ISS ist eine lebenserhaltende Versorgung über einen längeren Zeitraum unmöglich. Außerdem ist eine Evakuierung aus dem erdnahen Orbit mit den derzeitigen Möglichkeiten bei einem instabilen, kritisch erkrankten oder intubierten und beatmeten Patienten angesichts des begrenzten Volumens der Soyuz-Kapsel und der starken Verzögerung beim Wiedereintritt in die Atmosphäre unter Umständen nicht möglich.

Schlussfolgerung

Künftige Weltraum-Forschungsmissionen werden unsere Kenntnisse über die Erhaltung von Gesundheit und Leistungsfähigkeit der Besatzungsmitglieder erweitern. Viele Fragen sind noch zu lösen, bevor die Menschheit sich mit vertretbarem Risiko auf den Weg in die Tiefen des Weltalls machen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sagan C (1994) Pale blue dot: a vision of the human future in space. Random House, New York

  2. Webb JT, Pilmanis AA (2005) Altitude decompression sickness between 6858 and 9144 m following a 1-h prebreathe. Aviat Space Environ Med 76:34–38

    PubMed  Google Scholar 

  3. Norfleet WT, Butler BD (2001) Decompression sickness in extravehicular activities. In: Gravity and the lung, Vols. 1-0. CRC Press, pp 289–333. http://www.crcnetbase.com/doi/abs/10.1201/b15295-14

  4. Rai B, Foing BH, Kaur J (2012) Working hours, sleep, salivary cortisol, fatigue and neuro-behaviour during Mars analog mission: five crews study. Neurosci Lett 516:177–181

    Article  CAS  PubMed  Google Scholar 

  5. Baker ES, Barratt MR, Wear ML (2008) Human response to spaceflight. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer, New York, pp 27–58

  6. Whitson PA, Pietrzyk RA, Morukov BV, Sams CF (2001) The risk of renal stone formation during and after long duration space flight. Nephron 89:264–270

    Article  CAS  PubMed  Google Scholar 

  7. Watenpaugh DE, Hargens AR (2011) The cardiovascular system in microgravity. In: Terjung R (ed) Comprehensive physiology. John Wiley & Sons, Inc., Hoboken

  8. Convertino VA, Cooke WH (2005) Evaluation of cardiovascular risks of spaceflight does not support the NASA bioastronautics critical path roadmap. Aviat Space Environ Med 76:869–876

    PubMed  Google Scholar 

  9. Crucian B, Stowe R, Mehta S et al (2013) Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 33:456–465

    Article  CAS  PubMed  Google Scholar 

  10. Summers RL, Johnston SL, Marshburn TH, Williams DR (2005) Emergencies in space. Ann Emerg Med 46:177–184

    Article  PubMed  Google Scholar 

  11. Ball JR, Evans CH (2001) Committee on creating a vision for space medicine during travel beyond earth orbit board on health sciences policy. Safe passage: astronaut care for exploration missions. National Academy, Washington, D.C

    Google Scholar 

  12. Clément G, Bukley A (eds) (2007) Artificial gravity, 1st edn. Springer

  13. Nicogossian AE (1977) The Apollo-Soyuz Test Project: medical report (NASA SP-411.). National Technical Information Service

  14. Taddeo TA, Armstrong CW (2008) Spaceflight medical systems. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer, New York, pp 69–100. http://link.springer.com/chapter/10.1007/978-0-387-68164-1_4

  15. Group Mars Architecture Steering (2009) Mars design reference architecture 5.0. NASA/SP-2009-566. http://www.nasa.gov/pdf/373665main_NASA-SP-2009-566.pdf

  16. Marshburn TH (2008) Acute care. In: Principles of clinical medicine for space flight. Springer, New York, pp 101–122

  17. Kirkpatrick AW, Ball CG, Campbell M et al (2009) Severe traumatic injury during long duration spaceflight: light years beyond ATLS. J Trauma Manag Outcomes 3:4. doi:10.1186/1752-2897-3-4

    Article  PubMed Central  PubMed  Google Scholar 

  18. Norfleet WT (2000) Anesthetic concerns of space flight. Anesthesiology 92:1219–1222

    Article  CAS  PubMed  Google Scholar 

  19. Friedberg W, Darden E (2005) Health aspects of radiation exposure on a simulated mission to Mars. In: Radioactivity in the environment, vol 7. ES Simopulos, Amsterdam, pp 894–901 (Elsevier)

  20. Mermel LA (2013) Infection prevention and control during prolonged human space travel. Clin Infect Dis 56:123–130

    Article  PubMed  Google Scholar 

  21. Hinkelbein J, Schwalbe M, Dambier M et al (2012) Current concepts for anesthesia and emergency medicine in space. Resuscitation 83(Suppl 1):e79–e80

    Article  Google Scholar 

  22. Komorowski M, Watkins SD, Lebuffe G, Clark JB (2013) Potential anesthesia protocols for space exploration missions. Aviat Space Environ Med 84:226–233

    Article  PubMed  Google Scholar 

  23. Hinkelbein J, Spelten O (2013) Going beyond anesthesia in space exploration missions: emergency medicine and emergency medical care. Aviat Space Environ Med 84:747

    Article  PubMed  Google Scholar 

  24. Niazi AU, Haldipur N, Prasad AG, Chan VW (2012) Ultrasound-guided regional anesthesia performance in the early learning period: effect of simulation training. Reg Anesth Pain Med 37:51–54

    Article  PubMed  Google Scholar 

  25. Santos D, Carron PN, Yersin B, Pasquier M (2013) EZ-IO intraosseous device implementation in a pre-hospital emergency service: a prospective study and review of the literature. Resuscitation 84:440–445

    Article  PubMed  Google Scholar 

  26. Henderson EM, Holderman ML (2011) Technology applications that support space exploration. http://ntrs.nasa.gov/search.jsp?R=20110013138

  27. Hamilton DR (2008) Cardiovascular disorders. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer, New York, pp 317–359

  28. Braunecker S, Hinkelbein J (2014) Cardiopulmonary resuscitation (CPR) in microgravity and space. Aviat Space Environ Med 85:330

    Google Scholar 

  29. Braunecker S, Hinkelbein J (2015) Reanimation im Weltall: Bekannte Techniken zur kardio-pulmonalen Reanimation in Schwerelosigkeit. Notfall Rettungsmed (in print)

  30. Saluja IS, Williams DR, Woodard D et al (2008) Survey of astronaut opinions on medical crewmembers for a mission to Mars. Acta Astronaut 63:586–593

    Article  Google Scholar 

  31. Reid C, Clancy M (2013) Life, limb and sight-saving procedures-the challenge of competence in the face of rarity. Emerg Med J 30:89–90

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. M. Komorowski, C. Neuhaus and J. Hinkelbein state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hinkelbein DESA, EDIC, FAsMA.

Additional information

This article is available in German at Springer.Link under DOI XXXXXXX.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komorowski, M., Neuhaus, C. & Hinkelbein, J. Emergency medicine in space. Notfall Rettungsmed 18, 268–273 (2015). https://doi.org/10.1007/s10049-014-1979-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10049-014-1979-8

Keywords

Schlüsselwörter

Navigation