Skip to main content
Log in

Therapie des hämorrhagischen Schocks

Neue Strategien auf der Basis experimenteller Daten

Therapy of hemorrhagic shock

New strategies based on experimental results

  • Leitthema
  • Published:
Notfall + Rettungsmedizin Aims and scope Submit manuscript

Zusammenfassung

Die etablierte Therapie des hämorrhagischen Schocks besteht heute in einer raschen Blutungskontrolle, Erhalt der Sauerstoffversorgung des Gewebes durch Volumentherapie, der Gerinnungstherapie sowie dem Erhalt einer normalen Körpertemperatur. Dennoch existieren große Unterschiede in der Flüssigkeits- und Blutersatztherapie in den verschiedenen Institutionen. Wesentliche Ursachen hierfür sind das Fehlen von evidenzbasierten Daten, welches aufgrund der großen ethischen und rechtlichen Hürden die Initiierung von randomisierten, kontrollierten Studien erschwert. Dies ist einer der Hauptgründe, warum neue Therapieansätze, welche sich vor allem auf experimentelle Daten stützen, zu keinen wesentlichen Änderungen in der etablierten Therapie geführt haben.

Dieser Übersichtsartikel erläutert neue diagnostische und therapeutische Strategien unter Einbeziehung eines immunologisches Monitoring, neuer Wirkstoffe zum Erhalt der Herz-Kreislauf-Funktion, künstlicher Sauerstoffträger als Blutersatz und neue Flüssigkeitssubstitutionsregime, die aufgrund vielversprechender experimenteller Ergebnisse Einzug in die Klinik gehalten haben oder halten werden. Zusätzlich wird auf die Bedeutung von Alter, Geschlecht und genetischen Faktoren hingewiesen.

Abstract

Despite numerous promising experimental results control of bleeding, maintenance of tissue oxygenation by means of fluid replacement, support of the coagulation system and sustainment of normothermia are mainstays in the therapy of patients in hemorrhagic shock. Regimens for volume and blood replacement, however, vary widely between trauma centers due to the lack of evidence-based publications referring to randomized controlled clinical trials. Ethical and legal requirements for the inclusion of patients with hemorrhagic shock in clinical trials have impeded the rapid introduction of experimental strategies in the clinical arena.

This review article will point out new therapeutic strategies, i.e. immunomodulation, cardiovascular maintenance, use of artificial oxygen carrying substances and new formulae for volume substitution, which have been introduced into clinical therapy or are in the process of being transformed from bench to bedside. In addition, the impact of gender, age and genetics on cardiovascular and immune responses will be reflected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Angele MK, Schneider CP, Chaudry IH (2008) Bench-to-bedside review: Latest results in hemorrhagic shock. Crit Care 12:218

    Article  PubMed  Google Scholar 

  2. Kauvar DS, Lefering R, Wade CE (2006) Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations and therapeutic considerations. J Trauma 60:S3–S11

    Article  PubMed  Google Scholar 

  3. Choudhry MA, Bland KI, Chaudry IH (2007) Trauma and immune response – effect of gender differences. Injury 38:v1382–1391

    Article  Google Scholar 

  4. Deitch EA, Livingston DH, Lavery RF (2007) Hormonally active women tolerate shock-trauma better than do men: a prospective study of over 4000 trauma patients. Ann Surg 246:447–453

    Article  PubMed  Google Scholar 

  5. Durham RM, Moran JJ, Mazuski JE et al (2003) Multiple organ failure in trauma patients. J Trauma 55:608–616

    Article  PubMed  Google Scholar 

  6. Spahn DR, Cerny V, Coats TJ et al (2007) Management of bleeding following major trauma: a European guideline. Crit Care 11:R17

    Article  PubMed  Google Scholar 

  7. Moore FA, McKinley BA, Moore EE et al (2006) Inflammation and the Host Response to Injury, a large-scale collaborative project: patient-oriented research core – standard operating procedures for clinical care. III. Guidelines for shock resuscitation. J Trauma 61:82–89

    Article  PubMed  Google Scholar 

  8. West MA, Shapiro MB, Nathens AB et al (2006) Inflammation and the host response to injury, a large-scale collaborative project: Patient-oriented research core-standard operating procedures for clinical care. IV. Guidelines for transfusion in the trauma patient. J Trauma 61:436–439

    Article  PubMed  Google Scholar 

  9. Angele MK, Schwacha MG, Ayala A et al (2000) Effect of gender and sex hormones on immune responses following shock. Shock 14:81–90

    Article  PubMed  CAS  Google Scholar 

  10. Angele MK, Frantz MC, Chaudry IH (2006) Gender and sex hormones influence the response to trauma and sepsis: potential therapeutic approaches. Clinics 61:479–488

    Article  PubMed  Google Scholar 

  11. Angele MK, Catania RA, Ayala A et al (1998) Dehydroepiandrosterone: an inexpensive steroid hormone that decreases the mortality due to sepsis following trauma-induced hemorrhage. Arch Surg 133:1281–1288

    Article  PubMed  CAS  Google Scholar 

  12. Frantz MC, Prix NJ, Wichmann MW et al (2005) Dehydroepiandrosterone restores depressed peripheral blood mononuclear cell function following major abdominal surgery via the estrogen receptors. Crit Care Med 33:1779–1786

    Article  PubMed  CAS  Google Scholar 

  13. Schneider CP, Schwacha MG, Chaudry IH (2006) Influence of gender and age on T-cell responses in a murine model of trauma-hemorrhage: differences between circulating and tissue-fixed cells. J Appl Physiol 100:826–833

    Article  PubMed  Google Scholar 

  14. Schneider CP, Schwacha MG, Chaudry IH (2007) Impact of sex and age on bone marrow immune responses in a murine model of trauma-hemorrhage. J Appl Physiol 102:113–121

    Article  PubMed  CAS  Google Scholar 

  15. Giannoudis PV, van Griensven M, Tsiridis E et al (2007) The genetic predisposition to adverse outcome after trauma. J Bone Joint Surg Br 89:1273–1279

    Article  PubMed  CAS  Google Scholar 

  16. Schroeder O, Schulte KM, Schroeder J et al (2008) The 1082 interleukin-10 polymorphism is associated with acute respiratory failure after major trauma: a prospective cohort study. Surgery 143:233–242

    Article  PubMed  Google Scholar 

  17. Canter JA, Norris PR, Moore JH et al (2007) Specific polymorphic variation in the mitochondrial genome and increased in-hospital mortality after severe trauma. Ann Surg 246:406–411

    Article  PubMed  Google Scholar 

  18. Biberthaler P, Bogner V, Baker HV et al (2005) Genome-wide monocytic mRNA expression in polytrauma patients for identification of clinical outcome. Shock 24:11–19

    Article  PubMed  CAS  Google Scholar 

  19. Moore FA, McKinley BA, Moore EE (2004) The next generation in shock resuscitation. Lancet 363:1988–1996

    Article  PubMed  Google Scholar 

  20. Kreimeier U, Lackner CK, Prückner S et al (2003) Neue Strategien in der Volumenersatztherapie beim Polytrauma. Notfall Rettungsmed 6:77–88

    Article  Google Scholar 

  21. Rixen D, Siegel JH (2005) Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care 9:441–453

    Article  PubMed  Google Scholar 

  22. Knudson MM, Lee S, Erickson V et al (2003) Tissue oxygen monitoring during hemorrhagic shock and resuscitation: a comparison of lactated Ringer’s solution, hypertonic saline dextran and HBOC-201. J Trauma 54:242–252

    Article  PubMed  CAS  Google Scholar 

  23. Clavijo-Alvarez JA, Sims CA et al (2004) Bladder mucosa pH and Pco2 as a minimally invasive monitor of hemorrhagic shock and resuscitation. J Trauma 57:1199–1209

    Article  PubMed  Google Scholar 

  24. Clavijo-Alvarez JA, Sims CA, Pinsky MR et al (2005) Monitoring skeletal muscle and subcutaneous tissue acid-base status and oxygenation during hemorrhagic shock and resuscitation. Shock 24:270–275

    Article  PubMed  CAS  Google Scholar 

  25. Ristagno G, Tang W, Sun S et al (2006) Role of buccal PCO2 in the management of fluid resuscitation during hemorrhagic shock. Crit Care Med 34:442–446

    Article  Google Scholar 

  26. Vaezy S, Zderic V (2007) Hemorrhage control using high intensity focused ultrasound. Int J Hyperthermia 23:203–211

    Article  PubMed  Google Scholar 

  27. Angele MK, Chaudry IH (2005) Surgical trauma and immunosuppression: pathophysiology and potential immunomodulatory approaches. Langenbecks Arch Surg 390:333–341

    Article  PubMed  Google Scholar 

  28. Tschoeke SK, Ertel W (2007) Immunoparalysis after multiple trauma. Injury 38:1346–1357

    Article  PubMed  Google Scholar 

  29. Todd SR, Malinoski D, Muller PJ et al (2007) Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma 62:636–639

    Article  PubMed  Google Scholar 

  30. Savage SA, Fitzpatrick CM, Kashyap VS et al (2005) Endothelial dysfunction after lactated Ringer’s solution resuscitation for hemorrhagic shock. J Trauma 59:284–290

    Article  PubMed  Google Scholar 

  31. Mulier KE, Beilman GJ, Conroy MJ et al (2005) Ringer’s ethyl pyruvate in hemorrhagic shock and resuscitation does not improve early hemodynamics or tissue energetics. Shock 23:248–252

    PubMed  CAS  Google Scholar 

  32. Fink MP (2008) Ethyl pyruvate. Curr Opin Anaesthesiol 21:160–167

    Article  PubMed  Google Scholar 

  33. Choi PT, Yip G, Quinonez LG, Cook DJ (1999) Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 27:200–210

    Article  PubMed  CAS  Google Scholar 

  34. Rizoli SB (2003) Crystalloids and colloids in trauma resuscitation: a brief overview of the current debate. J Trauma 54:82–88

    Google Scholar 

  35. Watters JM, Tieu BH, Todd SR et al (2006) Fluid resuscitation increases inflammatory gene transcription after traumatic injury. J Trauma 61:300–308

    Article  PubMed  Google Scholar 

  36. Roberts I, Alderson P, Bunn F (2004) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev CD000567

  37. Rushing GD, Britt LD (2008) Reperfusion injury after hemorrhage: a collective review. Ann Surg 247:929–937

    Article  PubMed  CAS  Google Scholar 

  38. Cochrane Injuries Group (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. Cochrane Injuries Group Albumin Reviewers. BMJ 317:235–240

    Google Scholar 

  39. Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  PubMed  CAS  Google Scholar 

  40. Matsushita S, Chuang VT, Kanazawa M et al (2006) Recombinant human serum albumin dimer has high blood circulation activity and low vascular permeability in comparison with native human serum albumin. Pharm Res 23:882–891

    Article  PubMed  CAS  Google Scholar 

  41. Himmelseher S (2007) Hypertonic saline solutions for treatment of intracranial hypertension. Curr Opin Anaesthesiol 20:414–426

    Article  PubMed  Google Scholar 

  42. Kentner R, Safar P, Prueckner S et al (2005) Titrated hypertonic/hyperoncotic solution for hypotensive fluid resuscitation during uncontrolled hemorrhagic shock in rats. Resuscitation 65:87–95

    Article  PubMed  Google Scholar 

  43. Watters JM, Tieu BH, Differding JA et al (2006) A single bolus of 3% hypertonic saline with 6% dextran provides optimal initial resuscitation after uncontrolled hemorrhagic shock. J Trauma 61:75–81

    Article  PubMed  CAS  Google Scholar 

  44. Deree J, de Campos T, Shenvi E et al (2007) Hypertonic saline and pentoxifylline attenuates gut injury after hemorrhagic shock: the kinder, gentler resuscitation. J Trauma 62:818–827

    Article  PubMed  CAS  Google Scholar 

  45. Brasel KJ, Bulger E, Cook AJ et al (2008) Hypertonic resuscitation: design and implementation of a prehospital intervention trial. J Am Coll Surg 206:220–232

    Article  PubMed  Google Scholar 

  46. Winslow RM (2006) Current status of oxygen carriers (‚blood substitutes‘). Vox Sang 91:102–110

    Article  PubMed  CAS  Google Scholar 

  47. Spahn DR, Kocian R (2005) Artificial O2 carriers: status in 2005. Curr Pharm Des 11:4099–4114

    Article  PubMed  CAS  Google Scholar 

  48. Spahn DR, Waschke KF, Standl T et al (2002) Use of perflubron emulsion to decrease allogeneic blood transfusion in high-blood-loss non-cardiac surgery: results of a European phase 3 study. Anesthesiology 97:1338–1349

    Article  PubMed  Google Scholar 

  49. Natanson C, Kern SJ, Lurie P et al (2008) Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 299:2304–2312

    Article  PubMed  CAS  Google Scholar 

  50. Terajima K, Tsueshita T, Sakamoto A et al (2006) Fluid resuscitation with hemoglobin vesicles in a rabbit model of acute hemorrhagic shock. Shock 25:184–189

    Article  PubMed  CAS  Google Scholar 

  51. Wenzel V, Raab H, Dünser MW (2008) Arginine vasopressin: a promising rescue drug in the treatment of uncontrolled haemorrhagic shock. Best Pract Res Clin Anaesthesiol 22:299–316

    Article  PubMed  CAS  Google Scholar 

  52. Lienhart HG, Lindner KH, Wenzel V (2008) Developing alternative strategies for the treatment of traumatic haemorrhagic shock. Curr Opin Crit Care 14:247–253

    Article  PubMed  Google Scholar 

  53. Wu R, Wang P (2006) Preclinical studies with adrenomedullin and its binding protein as cardiovascular protective agents for hemorrhagic shock. Cardiovasc Drug Rev 24:204–213

    Article  PubMed  CAS  Google Scholar 

  54. Wu R, Dong W, Zhou M et al (2007) Adrenomedullin and adrenomedullin binding protein-1 prevent metabolic acidosis after uncontrolled hemorrhage in rats. Crit Care Med 35:912–918

    Article  PubMed  CAS  Google Scholar 

  55. Goodnough LT, Shander AS (2007) Recombinant factor VIIa: safety and efficacy. Curr Opin Hematol 14:504–509

    Article  PubMed  CAS  Google Scholar 

  56. Schreiber MA, Holcomb JB, Hedner U et al (2002) The effect of recombinant factor VIIa on coagulopathic pigs with grade V liver injuries. J Trauma 53:252–257

    Article  PubMed  CAS  Google Scholar 

  57. Martinowitz U, Holcomb JB, Pusateri AE et al (2001) Intravenous rFVIIa administered for hemorrhage control in hypothermic coagulopathic swine with grade V liver injuries. J Trauma 50:721–729

    Article  PubMed  CAS  Google Scholar 

  58. Boffard KD, Riou B, Warren B et al (2005) Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma 59:8–15

    Article  PubMed  CAS  Google Scholar 

  59. Stanworth SJ, Birchall J, Doree CJ et al (2007) Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev CD005011

  60. Andersson U, Wang H, Palmblad K et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  PubMed  CAS  Google Scholar 

  61. Rendon-Mitchell B, Ochani M, Li J et al (2003) IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol 170:3890–3897

    PubMed  CAS  Google Scholar 

  62. Yang R, Harada T, Mollen KP et al (2006) Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 12:105–114

    Article  PubMed  CAS  Google Scholar 

  63. Kuebler JF, Toth B, Yokoyama Y et al (2004) Alpha1-acid-glycoprotein protects against trauma-hemorrhagic shock. J Surg Res 119:21–28

    Article  PubMed  CAS  Google Scholar 

  64. Mok YY, Atan MS, Yoke Ping C et al (2004) Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol 143:881–889

    Article  PubMed  CAS  Google Scholar 

  65. McDonald MC, Mota-Filipe H, Wright JA et al (2000) Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase on the organ injury and dysfunction caused by haemorrhagic shock. Br J Pharmacol 130:843–850

    Article  PubMed  CAS  Google Scholar 

  66. Fink MP, Macias CA, Xiao J et al (2007) Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted antioxidants. Crit Care Med 35:461–467

    Article  Google Scholar 

  67. Peckham RM, Handrigan MT, Bentley TB et al (2007) C5-blocking antibody reduces fluid requirements and improves responsiveness to fluid infusion in hemorrhagic shock managed with hypotensive resuscitation. J Appl Physiol 102:673–680

    Article  PubMed  CAS  Google Scholar 

  68. Calvey CR, Toledo-Pereyra LH (2007) Selectin inhibitors and their proposed role in ischemia and reperfusion. J Invest Surg 20:71–85

    Article  PubMed  Google Scholar 

  69. Beekley AC (2008) Damage control resuscitation: a sensible approach to the exsanguinating surgical patient. Crit Care Med 36:267–274

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.K. Angele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C., Faist, E., Chaudry, I. et al. Therapie des hämorrhagischen Schocks. Notfall Rettungsmed 12, 193–200 (2009). https://doi.org/10.1007/s10049-008-1147-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10049-008-1147-0

Schlüsselwörter

Keywords

Navigation