Skip to main content
Log in

Multiple sclerosis in families: risk factors beyond known genetic polymorphisms

  • Short Communication
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that predominantly affects young adults. The genetic contributions to this multifactorial disease were underscored by genome wide association studies and independent replication studies. A weighted genetic risk score (wGRS) was recently established using the identified MS risk loci in order to predict MS outcome including clinical and paraclinical features. Here, we present the results on a family with several affected siblings including a monozygotic triplet. The individuals were genotyped for 57 non-MHC risk loci as well as the HLA DRB1*1501 tagging SNP rs3135388 with subsequent calculation of the wGRS. Additionally, SNP array based analyses for aberrant chromosomal regions were performed for all individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Sadovnick AD, Armstrong H, Rice GP, et al. (1993) A population-based study of multiple sclerosis in twins: update. Ann Neurol 33:281–285. doi:10.1002/ana.410330309

    Article  CAS  PubMed  Google Scholar 

  2. Mumford CJ, Wood NW, Kellar-Wood H, et al. (1994) The British Isles survey of multiple sclerosis in twins. Neurology 44:11–11. doi:10.1212/WNL.44.1.11

    Article  CAS  PubMed  Google Scholar 

  3. Sawcer S, Hellenthal G, Pirinen M, et al. (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219. doi:10.1038/nature10251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beecham AH, Patsopoulos NA, Xifara DK, et al. (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45:1353–1360. doi:10.1038/ng.2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gourraud P-A, McElroy JP, Caillier SJ, et al. (2011) Aggregation of multiple sclerosis genetic risk variants in multiple and single case families. Ann Neurol 69:65–74. doi:10.1002/ana.22323

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Jager PL, Chibnik LB, Cui J, et al. (2009) Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol 8:1111–1119. doi:10.1016/S1474-4422(09)70275-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akkad DA, Olischewsky A, Reiner F, et al. (2015) Combinations of susceptibility genes are associated with higher risk for multiple sclerosis and imply disease course specificity. PLoS one 10:e0127632. doi:10.1371/journal.pone.0127632

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dankowski T, Buck D, Andlauer TFM, et al. (2015) Successful replication of GWAS hits for multiple sclerosis in 10.000 Germans using the exome array. Genet Epidemiol 9(8):601–608. doi:10.1002/gepi.21933

    Article  Google Scholar 

  9. Esposito F, Guaschino C, Sorosina M, et al. (2015) Impact of MS genetic loci on familial aggregation, clinical phenotype, and disease prediction. Neurol Neuroimmunol Neuroinflammation 2:e129–e129. doi:10.1212/NXI.0000000000000129

    Article  Google Scholar 

  10. O’Gorman C, Lin R, Stankovich J, Broadley SA (2013) Modelling genetic susceptibility to multiple sclerosis with family data. Neuroepidemiology 40:1–12. doi:10.1159/000341902

    Article  PubMed  Google Scholar 

  11. Haas S, Steplewski A, Siracusa LD, et al. (1995) Identification of a sequence-specific single-stranded DNA binding protein that suppresses transcription of the mouse myelin basic protein gene. J Biol Chem 270:12503–12510

    Article  CAS  PubMed  Google Scholar 

  12. Muralidharan V, Tretiakova A, Steplewski A, et al. (1997) Evidence for inhibition of MyEF-2 binding to MBP promoter by MEF-1/Pur alpha. J Cell Biochem 66(4):524–531 PMID: 9282330

    Article  CAS  PubMed  Google Scholar 

  13. Haghikia A, Jörg S, Duscha A, et al. (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43(4):817–829. doi:10.1016/j.immuni.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  14. Westerlind H, Ramanujam R, Uvehag D, et al. (2014) Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden. Brain 137:770–778. doi:10.1038/ejhg.2014.155

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Faculty of Medicine of the Ruhr-University-Bochum for the financial support (FoRUM reference number F762N-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf A. Linker.

Ethics declarations

Conflict of interest

Dr. Akkad, Dr. Lee, Ms. Bruch, Dr. Haghikia, Dr. Epplen, and Dr. Hoffjan report no disclosures. Dr. Linker holds an endowed professorship supported by the Novartis Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkad, D.A., Lee, DH., Bruch, K. et al. Multiple sclerosis in families: risk factors beyond known genetic polymorphisms. Neurogenetics 17, 131–135 (2016). https://doi.org/10.1007/s10048-016-0474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-016-0474-4

Keywords

Navigation