Skip to main content

Advertisement

Log in

Alzheimer’s disease risk variants show association with cerebrospinal fluid amyloid beta

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

The use of quantitative endophenotypes in genetic studies may provide greater power, allowing for the use of powerful statistical methods and a biological model for the effects of the disease-associated genetic variation. Cerebrospinal fluid (CSF) amyloid beta (Aβ) levels are promising endophenotypes for late-onset Alzheimer’s disease (LOAD) and show correlation with LOAD status and Aβ deposition. In this study, we investigated 29 single nucleotide polymorphisms (SNPs) positive in AlzGene (http://www.alzgene.org) meta-analyses, for association with CSF Aβ levels in 313 individuals. This study design makes it possible to replicate reported LOAD risk alleles while contributing novel information about the mechanism by which they might affect that risk. Alleles in ACE, APOE, BDNF, DAPK1, and TF are significantly associated with CSF Aβ levels. In vitro analysis of the TF SNP showed a change in secreted Aβ consistent with the CSF phenotype and known Alzheimer’s disease variants, demonstrating the utility of this approach in identifying SNPs that influence risk for disease via an Aβ-related mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368. doi:10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  2. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH et al (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405. doi:10.1001/archneur.58.3.39711

    CAS  PubMed  Google Scholar 

  3. Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM (1998) Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol 57:1168–1174. doi:10.1097/00005072-199812000-00009

    Article  CAS  PubMed  Google Scholar 

  4. Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844. doi:10.1212/01.wnl.0000219668.47116.e6

    Article  CAS  PubMed  Google Scholar 

  5. Kauwe JS, Jacquart S, Chakraverty S, Wang J, Mayo K, Fagan AM et al (2007) Extreme cerebrospinal fluid amyloid beta levels identify family with late-onset Alzheimer’s disease presenilin 1 mutation. Ann Neurol 61:446–453. doi:10.1002/ana.21099

    Article  CAS  PubMed  Google Scholar 

  6. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519. doi:10.1002/ana.20730

    Article  CAS  PubMed  Google Scholar 

  7. Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64:343–349. doi:10.1001/archneur.64.3.noc60123

    Article  PubMed  Google Scholar 

  8. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23. doi:10.1038/ng1934

    Article  CAS  PubMed  Google Scholar 

  9. Ding C, Cantor CR (2003) A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc Natl Acad Sci U S A 100:3059–3064. doi:10.1073/pnas.0630494100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM et al (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann Neurol 47:739–747. doi:10.1002/1531-8249(200006)47:6<739::AID-ANA6>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C et al (2007) Abeta40 inhibits amyloid deposition in vivo. J Neurosci 27:627–633. doi:10.1523/JNEUROSCI.4849-06.2007

    Article  CAS  PubMed  Google Scholar 

  12. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870. doi:10.1038/nm0896-864

    Article  CAS  PubMed  Google Scholar 

  13. Dudbridge F (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 25:115–121. doi:10.1002/gepi.10252

    Article  PubMed  Google Scholar 

  14. Wang J, Beher D, Nyborg AC, Shearman MS, Golde TE, Goate A (2006) C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J Neurochem 96:218–227

    Article  CAS  PubMed  Google Scholar 

  15. Keavney B, McKenzie CA, Connell JM, Julier C, Ratcliffe PJ, Sobel E et al (1998) Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum Mol Genet 7:1745–1751. doi:10.1093/hmg/7.11.1745

    Article  CAS  PubMed  Google Scholar 

  16. Kehoe PG, Katzov H, Feuk L, Bennet AM, Johansson B, Wiman B et al (2003) Haplotypes extending across ACE are associated with Alzheimer’s disease. Hum Mol Genet 12:859–867. doi:10.1093/hmg/ddg094

    Article  CAS  PubMed  Google Scholar 

  17. Prince JA, Zetterberg H, Andreasen N, Marcusson J, Blennow K (2004) APOE epsilon4 allele is associated with reduced cerebrospinal fluid levels of Abeta42. Neurology 62:2116–2118

    Article  CAS  PubMed  Google Scholar 

  18. Belbin O, Dunn JL, Ling Y, Morgan L, Chappell S, Beaumont H et al (2007) Regulatory region single nucleotide polymorphisms of the apolipoprotein E gene and the rate of cognitive decline in Alzheimer’s disease. Hum Mol Genet 16:2199–2208. doi:10.1093/hmg/ddm171

    Article  CAS  PubMed  Google Scholar 

  19. Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem 276:47863–47868

    CAS  PubMed  Google Scholar 

  20. Li Y, Grupe A, Rowland C, Nowotny P, Kauwe JS, Smemo S et al (2006) DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Hum Mol Genet 15:2560–2568. doi:10.1093/hmg/ddl178

    Article  CAS  PubMed  Google Scholar 

  21. Morse LJ, Payton SM, Cuny GD, Rogers JT (2004) FDA-preapproved drugs targeted to the translational regulation and processing of the amyloid precursor protein. J Mol Neurosci 24:129–136. doi:10.1385/JMN:24:1:129

    Article  CAS  PubMed  Google Scholar 

  22. Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MB, Weinreb O et al (2006) Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (−)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J Neurochem 97:527–536. doi:10.1111/j.1471-4159.2006.03770.x

    Article  CAS  PubMed  Google Scholar 

  23. Schjeide B-MM, McQueen MB, Mullin K, DiVito J, Hogan MF, Parkinson M, Hooli B, Lange C, Blacker D, Tanzi RE, Bertram L (2009) Assessment of Alzheimer’s disease case–control associations using family-based methods. Neurogenetics. doi:10.1007/s10048-008-0151-3

Download references

Acknowledgments

This work was supported by the National Institute on Aging (P50-AG05681, J.C.M.; P01-AG03991, J.C.M.; P01-AG026276, J.C.M.; R01-AG16208, A.M.G.; P30-N5057105, D.M.H.; 1-TL1-RR024995-01 and 1-KL2-RR024994-01, Washington University) the Barnes Jewish Foundation and the American Health Assistance Foundation (A.M.G.). This publication was made possible in part by grant number UL1 RR024992 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. J.S.K.K. is a Hope Center Fellow supported by the Hope Center for Neurological Disorders and National Institutes of Health Grant T32 MH14677. The authors gratefully acknowledge the individuals who participated in this study. The authors also acknowledge the contributions of the Genetics, Clinical, Psychometric, and Biostatistics Cores of the Washington University Alzheimer’s Disease Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Goate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauwe, J.S.K., Wang, J., Mayo, K. et al. Alzheimer’s disease risk variants show association with cerebrospinal fluid amyloid beta. Neurogenetics 10, 13–17 (2009). https://doi.org/10.1007/s10048-008-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-008-0150-4

Keywords

Navigation