Skip to main content
Log in

The location of DCX mutations predicts malformation severity in X-linked lissencephaly

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Lissencephaly spectrum (LIS) is one of the most severe neuronal migration disorders that ranges from agyria/pachygyria to subcortical band heterotopia. Approximately 80% of patients with the LIS spectrum carry mutations in either the LIS1 or DCX (doublecortin) genes which have an opposite gradient of severity. The aim of the study was to evaluate in detail the phenotype of DCX-associated lissencephaly and to look for genotype–phenotype correlations. Of the 180 male patients with DCX-related lissencephaly, 33 males (24 familial cases and nine cases with de novo mutations) were found with hemizygous DCX mutations and were clinically and genetically assessed here. DCX mutation analysis revealed that the majority of mutations were missense (79.2%), clustered in the two evolutionary conserved domains, N-DC and C-DC, of DCX. The most prominent radiological phenotype was an anteriorly predominant pachygyria or agyria (54.5%) although DCX-associated lissencephaly encompasses a complete range of LIS grades. The severity of neurological impairment was in accordance with the degree of agyria with severe cognitive impairment in all patients, inability to walk independently in over half and refractory epilepsy in more than a third. For genotype–phenotype correlations, patients were divided in two groups according to the location of DCX missense mutations. Patients with mutations in the C-DC domain tended to have a less severe lissencephaly (grade 4–5 in 58.3%) compared with those in the N-DC domain (grade 4–5 in 36.3%) although, in this dataset, this was not statistically significant (p = 0.12). Our evaluation suggests a putative correlation between phenotype and genotype. These data provide further clues to deepen our understanding of the function of the DCX protein and may give new insights into the molecular mechanisms that could influence the consequence of the mutation in the N-DC versus the C-DC domain of DCX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kerjan G, Gleeson JG (2007) Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet 23:623–630. doi:10.1016/j.tig.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  2. Guerrini R, Dobyns WB, Barkovich AJ (2008) Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 31:154–162

    Article  PubMed  CAS  Google Scholar 

  3. Barkovich AJ, Koch TK, Carrol CL (1991) The spectrum of lissencephaly: report of ten patients analyzed by magnetic resonance imaging. Ann Neurol 30:139–146. doi:10.1002/ana.410300204

    Article  PubMed  CAS  Google Scholar 

  4. Reiner O, Carrozzo R, Shen Y et al (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721. doi:10.1038/364717a0

    Article  PubMed  CAS  Google Scholar 

  5. des Portes V, Pinard JM, Billuart P et al (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51–61. doi:10.1016/S0092-8674(00)80898-3

    Article  PubMed  Google Scholar 

  6. Gleeson JG, Allen KM, Fox JW et al (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72. doi:10.1016/S0092-8674(00)80899-5

    Article  PubMed  CAS  Google Scholar 

  7. Pilz DT, Matsumoto N, Minnerath S et al (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7:2029–2037. doi:10.1093/hmg/7.13.2029

    Article  PubMed  CAS  Google Scholar 

  8. Gleeson JG, Minnerath SR, Fox JW et al (1999) Characterization of mutations in the gene doublecortin in patients with double cortex syndrome. Ann Neurol 45:146–153. doi:10.1002/1531-8249(199902)45:2<146::AID-ANA3>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  9. des Portes V, Francis F, Pinard JM et al (1998) Doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum Mol Genet 7:1063–1070. doi:10.1093/hmg/7.7.1063

    Article  PubMed  Google Scholar 

  10. Gleeson JG, Minnerath S, Kuzniecky RI et al (2000) Somatic and germline mosaic mutations in the doublecortin gene are associated with variable phenotypes. Am J Hum Genet 67:574–581. doi:10.1086/303043

    Article  PubMed  CAS  Google Scholar 

  11. Dobyns WB, Truwit CL, Ross ME et al (1999) Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly. Neurology 53:270–277

    PubMed  CAS  Google Scholar 

  12. Matsumoto N, Leventer RJ, Kuc JA et al (2001) Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia. Eur J Hum Genet 9:5–12. doi:10.1038/sj.ejhg.5200548

    Article  PubMed  CAS  Google Scholar 

  13. Mei D, Parrini E, Pasqualetti M et al (2007) Multiplex ligation-dependent probe amplification detects DCX gene deletions in band heterotopia. Neurology 68:446–450. doi:10.1212/01.wnl.0000252945.75668.5d

    Article  PubMed  CAS  Google Scholar 

  14. Francis F, Koulakoff A, Boucher D et al (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256. doi:10.1016/S0896-6273(00)80777-1

    Article  PubMed  CAS  Google Scholar 

  15. Gleeson JG, Lin PT, Flanagan LA et al (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271. doi:10.1016/S0896-6273(00)80778-3

    Article  PubMed  CAS  Google Scholar 

  16. Sapir T, Horesh D, Caspi M et al (2000) Doublecortin mutations cluster in evolutionarily conserved functional domains. Hum Mol Genet 9:703–712. doi:10.1093/hmg/9.5.703

    Article  PubMed  CAS  Google Scholar 

  17. Aigner L, Uyanik G, Couillard-Despres S et al (2003) Somatic mosaicism and variable penetrance in doublecortin-associated migration disorders. Neurology 60:329–332. doi:10.1001/archneur.60.3.329

    Article  PubMed  CAS  Google Scholar 

  18. Aigner L, Fluegel D, Dietrich J et al (2000) Isolated lissencephaly sequence and double-cortex syndrome in a German family with a novel doublecortin mutation. Neuropediatrics 31:195–198. doi:10.1055/s-2000-7452

    Article  PubMed  CAS  Google Scholar 

  19. D'Agostino MD, Bernasconi A, Das S et al (2002) Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. Brain 125:2507–2522. doi:10.1093/brain/awf248

    Article  PubMed  Google Scholar 

  20. Poolos NP, Das S, Clark GD et al (2002) Males with epilepsy, complete subcortical band heterotopia, and somatic mosaicism for DCX. Neurology 58:1559–1562

    PubMed  CAS  Google Scholar 

  21. Sakamoto M, Ono J, Okada S et al (2000) Genetic alteration of the DCX gene in Japanese patients with subcortical laminar heterotopia or isolated lissencephaly sequence. J Hum Genet 45:167–170. doi:10.1007/s100380050204

    Article  PubMed  CAS  Google Scholar 

  22. Dobyns WB, Truwit CL (1995) Lissencephaly and other malformations of cortical development: 1995 update. Neuropediatrics 26:132–147

    Article  PubMed  CAS  Google Scholar 

  23. Taylor KR, Holzer AK, Bazan JF et al (2000) Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 275:34442–34450. doi:10.1074/jbc.M007078200

    Article  PubMed  CAS  Google Scholar 

  24. Dobyns WB, Elias ER, Newlin AC et al (1992) Causal heterogeneity in isolated lissencephaly. Neurology 42:1375–1388

    PubMed  CAS  Google Scholar 

  25. Moores CA, Perderiset M, Kappeler C et al (2006) Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J 25:4448–4457. doi:10.1038/sj.emboj.7601335

    Article  PubMed  CAS  Google Scholar 

  26. Reiner O, Coquelle FM, Peter B et al (2006) The evolving doublecortin (DCX) superfamily. BMC Genomics 7:188. doi:10.1186/1471-2164-7-188

    Article  PubMed  CAS  Google Scholar 

  27. Kappeler C, Saillour Y, Baudoin JP et al (2006) Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Hum Mol Genet 15:1387–1400. doi:10.1093/hmg/ddl062

    Article  PubMed  CAS  Google Scholar 

  28. Koizumi H, Tanaka T, Gleeson JG (2006) Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron 49:55–66. doi:10.1016/j.neuron.2005.10.040

    Article  PubMed  CAS  Google Scholar 

  29. Moores CA, Perderiset M, Francis F et al (2004) Mechanism of microtubule stabilization by doublecortin. Mol Cell 14:833–839. doi:10.1016/j.molcel.2004.06.009

    Article  PubMed  CAS  Google Scholar 

  30. Kim MH, Cierpicki T, Derewenda U et al (2003) The DCX-domain tandems of doublecortin and doublecortin-like kinase. Nat Struct Biol 10:324–333. doi:10.1038/nsb918

    Article  PubMed  CAS  Google Scholar 

  31. Moores CA, Francis F, Perderiset M et al (2003) A double-take on MAPs. Nat Struct Biol 10:314–316. doi:10.1038/nsb0503-314

    Article  PubMed  CAS  Google Scholar 

  32. Horesh D, Sapir T, Francis F et al (1999) Doublecortin, a stabilizer of microtubules. Hum Mol Genet 8:1599–1610. doi:10.1093/hmg/8.9.1599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the families and clinicians Valérie Lieko, Marie Ange N’Guyen Morel, Isabelle Caubel, Pierre Angelo Vegiotti, Laurence Faivre Olivier, Bertrand Sotos, Anna Kaminska, Isabelle Desguerre and Sylvie Odent whose cooperation made this study possible. We thank David Keays and Drs M. Eisermann, Dr Soufflet and P Plouin for their helpful discussions and their help in the EEG analysis. This work was supported by the Société d'Etudes et de Soins pour les Enfants Paralysés et Polymalformés (CESEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Bahi-Buisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leger, PL., Souville, I., Boddaert, N. et al. The location of DCX mutations predicts malformation severity in X-linked lissencephaly. Neurogenetics 9, 277–285 (2008). https://doi.org/10.1007/s10048-008-0141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-008-0141-5

Keywords

Navigation