Skip to main content

Advertisement

Log in

Bioinformatic analysis of human CNS-expressed ion channels as candidates for episodic nervous system disorders

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

As monogenic forms of episodic nervous system disorders are often caused by ion channel mutations, we looked for features of human central nervous system (CNS) expressed ion channels that further our understanding of those phenotypes. To this end, we compared human ion channels with other CNS-expressed genes, which we categorized according to the existence of transmembrane domains. When looking at the phylogenetic distribution of these genes, we observed an increased percentage of ion channels that exist in vertebrate genomes while missing in invertebrate genomes. Because we hypothesized that this pattern may relate to a more specific expression, we searched for characteristics of ion channels that indicate a tighter expression regulation. We found that ion channels have longer intron and protein sequences, features typical of genes with more specific expression. In addition, ion channels have increased human–rodent conservation around their transcription start site, as indicated by a higher fraction of conserved noncoding regions. This points to a high relevance of mutations that regulate ion channel expression. When we finally asked whether vertebrate-specific diversification is also displayed by non-ion channel genes with important roles in the CNS, we found a similar phylogenetic distribution. This concordant phylogenetic pattern suggests that vertebrate-specific adaptations may account for a large part of the shared genetic basis of episodic CNS disorders, including monogenic and genetically complex disease manifestations. Consequently, this phylogenetic pattern may contribute to the prioritization of candidate genes in human genetic studies of episodic CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ptacek LJ, Fu YH (2004) Channels and disease: past, present, and future. Arch Neurol 61(11):1665–1668

    Article  PubMed  Google Scholar 

  2. Haut SR, Bigal ME, Lipton RB (2006) Chronic disorders with episodic manifestations: focus on epilepsy and migraine. Lancet Neurol 5(2):148–157

    Article  PubMed  Google Scholar 

  3. Ptacek LJ (1997) Channelopathies: ion channel disorders of muscle as a paradigm for paroxysmal disorders of the nervous system. Neuromuscul Disord 7(4):250–255

    Article  PubMed  CAS  Google Scholar 

  4. Cooper EC, Jan LY (1999) Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc Natl Acad Sci USA 96(9):4759–4766

    Article  PubMed  CAS  Google Scholar 

  5. Kullmann DM (2002) The neuronal channelopathies. Brain 125(Pt 6):1177–1195

    Article  PubMed  Google Scholar 

  6. Meisler MH, Kearney JA (2005) Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 115(8):2010–2017

    Article  PubMed  CAS  Google Scholar 

  7. Levitan IB (2006) Signaling protein complexes associated with neuronal ion channels. Nat Neurosci 9(3):305–310

    Article  PubMed  CAS  Google Scholar 

  8. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6(11):850–862

    Article  PubMed  CAS  Google Scholar 

  9. Antonarakis SE, Beckmann JS (2006) Mendelian disorders deserve more attention. Nat Rev Genet 7(4):277–282

    Article  PubMed  CAS  Google Scholar 

  10. Peltonen L et al (2006) Lessons from studying monogenic disease for common disease. Hum Mol Genet 15(Spec No 1):R67–R74

    Article  PubMed  CAS  Google Scholar 

  11. Gargus JJ (2006) Ion channel functional candidate genes in multigenic neuropsychiatric disease. Biol Psychiatry 60(2):177–185

    PubMed  CAS  Google Scholar 

  12. Hubbard T et al (2005) Ensembl 2005. Nucleic Acids Res 33(Database issue):D447–D453

    Google Scholar 

  13. O’Donovan C, Apweiler R, Bairoch A (2001) The human proteomics initiative (HPI). Trends Biotechnol 19(5):178–181

    Article  PubMed  CAS  Google Scholar 

  14. Camon E et al (2004) The Gene Ontology Annotation (GOA) database: sharing knowledge in Uniprot with gene ontology. Nucleic Acids Res 32(Database issue):D262–D266

    Article  CAS  Google Scholar 

  15. Krogh A et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  PubMed  CAS  Google Scholar 

  16. Su AI et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101(16):6062–6067

    Article  PubMed  CAS  Google Scholar 

  17. Kent WJ et al (2005) Exploring relationships and mining data with the UCSC Gene Sorter. Genome Res 15(5):737–741

    Article  PubMed  CAS  Google Scholar 

  18. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  PubMed  CAS  Google Scholar 

  19. Blomme T et al (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43

    Article  PubMed  CAS  Google Scholar 

  20. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

    PubMed  CAS  Google Scholar 

  21. Schwartz S et al (2003) Human–mouse alignments with BLASTZ. Genome Res 13(1):103–107

    Article  PubMed  CAS  Google Scholar 

  22. Freudenberg-Hua Y et al (2005) Systematic investigation of genetic variability in 111 human genes—implications for studying variable drug response. Pharmacogenomics J 5(3):183–192

    Article  PubMed  CAS  Google Scholar 

  23. Prabhakar S et al (2006) Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res 16(7):855–863

    Article  PubMed  CAS  Google Scholar 

  24. Harris MA et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258–D261

    Google Scholar 

  25. Liu Y, Gerstein M, Engelman DM (2004) Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Proc Natl Acad Sci USA 101(10):3495–3497

    Article  PubMed  CAS  Google Scholar 

  26. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282(5396):2028–2033

    Article  PubMed  CAS  Google Scholar 

  27. Rubin GM et al (2000) Comparative genomics of the eukaryotes. Science 287(5461):2204–2215

    Article  PubMed  CAS  Google Scholar 

  28. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3(11):838–849

    Article  PubMed  CAS  Google Scholar 

  29. Prachumwat A, Li WH (2006) Protein function, connectivity, and duplicability in yeast. Mol Biol Evol 23(1):30–39

    Article  PubMed  CAS  Google Scholar 

  30. Vinogradov AE (2004) Compactness of human housekeeping genes: selection for economy or genomic design? Trends Genet 20(5):248–253

    Article  PubMed  CAS  Google Scholar 

  31. Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19(7):362–365

    Article  PubMed  CAS  Google Scholar 

  32. Winter EE, Goodstadt L, Ponting CP (2004) Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res 14(1):54–61

    Article  PubMed  CAS  Google Scholar 

  33. Zhang L, Li WH (2004) Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol 21(2):236–239

    Article  PubMed  CAS  Google Scholar 

  34. Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23(2):327–337

    Article  PubMed  CAS  Google Scholar 

  35. Sironi M et al (2005) Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on non-coding sequences. Hum Mol Genet 14(17):2533–2546

    Article  PubMed  CAS  Google Scholar 

  36. Marcotte EM et al (2000) Localizing proteins in the cell from their phylogenetic profiles. Proc Natl Acad Sci USA 97(22):12115–12120

    Article  PubMed  CAS  Google Scholar 

  37. Hattori E et al (2005) Genetic tests of biologic systems in affective disorders. Mol Psychiatry 10(8):719–740

    Article  PubMed  CAS  Google Scholar 

  38. Kalachikov S et al (2002) Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 30(3):335–341

    Article  PubMed  Google Scholar 

  39. Skradski SL et al (2001) A novel gene causing a Mendelian audiogenic mouse epilepsy. Neuron 31(4):537–544

    Article  PubMed  CAS  Google Scholar 

  40. Lee HY et al (2004) The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet 13(24):3161–3170

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki T et al (2004) Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 36(8):842–849

    Article  PubMed  CAS  Google Scholar 

  42. Owen MJ, O’Donovan MC, Harrison PJ (2005) Schizophrenia: a genetic disorder of the synapse? BMJ 330(7484):158–159

    Article  PubMed  Google Scholar 

  43. Kirov G, O’Donovan MC, Owen MJ (2005) Finding schizophrenia genes. J Clin Invest 115(6):1440–1448

    Article  PubMed  CAS  Google Scholar 

  44. Plummer NW, Meisler MH (1999) Evolution and diversity of mammalian sodium channel genes. Genomics 57(2):323–331

    Article  PubMed  CAS  Google Scholar 

  45. Piontkivska H, Hughes AL (2003) Evolution of vertebrate voltage-gated ion channel alpha chains by sequential gene duplication. J Mol Evol 56(3):277–285

    Article  PubMed  CAS  Google Scholar 

  46. Anderson PA, Greenberg RM (2001) Phylogeny of ion channels: clues to structure and function. Comp Biochem Physiol B Biochem Mol Biol 129(1):17–28

    Article  PubMed  CAS  Google Scholar 

  47. Strong M, Chandy KG, Gutman GA (1993) Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. Mol Biol Evol 10(1):221–242

    PubMed  CAS  Google Scholar 

  48. Harte R, Ouzounis CA (2002) Genome-wide detection and family clustering of ion channels. FEBS Lett 514(2–3):129–134

    Article  PubMed  CAS  Google Scholar 

  49. Lespinet O et al (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12(7):1048–1059

    Article  PubMed  CAS  Google Scholar 

  50. Striedter GF (2006) Precis of principles of brain evolution. Behav Brain Sci 29(1):1–12, discussion 12–36

    Article  PubMed  Google Scholar 

  51. Smith NG, Eyre-Walker A (2003) Human disease genes: patterns and predictions. Gene 318:169–175

    Article  PubMed  CAS  Google Scholar 

  52. Kondrashov FA, Ogurtsov AY, Kondrashov AS (2004) Bioinformatical assay of human gene morbidity. Nucleic Acids Res 32(5):1731–1737

    Article  PubMed  CAS  Google Scholar 

  53. Adie EA et al (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6(1):55

    Article  PubMed  CAS  Google Scholar 

  54. Lopez-Bigas N, Ouzounis CA (2004) Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res 32(10):3108–3114

    Article  PubMed  CAS  Google Scholar 

  55. Yin X et al (2006) Evolution of a neuroprotective function of central nervous system myelin. J Cell Biol 172(3):469–478

    Article  PubMed  CAS  Google Scholar 

  56. Gould RM et al (2005) Myelin tetraspan family proteins but no non-tetraspan family proteins are present in the ascidian (Ciona intestinalis) genome. Biol Bull 209(1):49–66

    Article  PubMed  CAS  Google Scholar 

  57. McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31(2):200–204

    Article  PubMed  CAS  Google Scholar 

  58. Gu X, Wang Y, Gu J (2002) Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 31(2):205–209

    Article  PubMed  CAS  Google Scholar 

  59. Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5(10):752–763

    Article  PubMed  CAS  Google Scholar 

  60. Noda AO, Ikeo K, Gojobori T (2006) Comparative genome analyses of nervous system-specific genes. Gene 365:130–136

    Article  PubMed  CAS  Google Scholar 

  61. International Rat Genome Consortium (2004) Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521

    Article  CAS  Google Scholar 

  62. Fraser HB (2005) Modularity and evolutionary constraint on proteins. Nat Genet 37(4):351–352

    Article  PubMed  CAS  Google Scholar 

  63. Khaitovich P et al (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309(5742):1850–1854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jimmy Holder, Devon Ryan, and Yun Freudenberg-Hua and the two anonymous reviewers for their comments on the manuscript. This work was supported by the Howard Hughes Medical Institute and a Sandler Neurogenetics grant. LJP is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Freudenberg or Louis J. Ptáček.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10048_2007_82_MOESM1_ESM.xls

10048_2007_82_MOESM2_ESM.xls

10048_2007_82_MOESM3_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberg, J., Fu, YH. & Ptáček, L.J. Bioinformatic analysis of human CNS-expressed ion channels as candidates for episodic nervous system disorders. Neurogenetics 8, 159–168 (2007). https://doi.org/10.1007/s10048-007-0082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-007-0082-4

Keywords

Navigation