Skip to main content
Log in

Subcellular localization of spastin: implications for the pathogenesis of hereditary spastic paraplegia

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous diseases characterized by neuronal degeneration that is maximal at the distal ends of the longest axons of the central nervous system. The most common cause of autosomal dominant HSP is mutation of a novel gene encoding spastin, a protein whose function is still being elucidated. One clue concerning spastin function is its intracellular localization. Here, we describe a novel anti-spastin antiserum designed to a unique epitope contained within all splicing isoforms. The antiserum exhibits specific immunostaining of recombinant spastin in intact, fixed cells. Using this reagent, we find that endogenous spastin is located at the centrosome in a variety of cell types at all points in the cell cycle. This localization is resistant to microtubule disruption, suggesting that spastin may be an integral centrosomal protein. In addition to the centrosome, spastin also localizes at discrete focal regions along the axons of primary cultured neurons. These data lend additional support to the emerging hypothesis that spastin plays a role in microtubule dynamics, with a crucial role in microtubule organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fink JK (1997) Advances in hereditary spastic paraplegia. Curr Opin Neurol 10:313–318

    Article  PubMed  CAS  Google Scholar 

  2. Reid E (2003) Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J Med Genet 40:81–86

    Article  PubMed  CAS  Google Scholar 

  3. Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine CS, Cruaud C, Durr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder JM, Prud’homme JF, Brice A, Fontaine B, Heilig B, Weissenbach J (1999) Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 23:296–303

    Article  PubMed  CAS  Google Scholar 

  4. Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions. Trends Cell Biol 8:65–71

    Article  PubMed  CAS  Google Scholar 

  5. Lupas AN, Martin J (2002) AAA proteins. Curr Opin Struct Biol 12:746–753

    Article  PubMed  CAS  Google Scholar 

  6. Beetz C, Brodhun M, Moutzouris K, Kiehntopf M, Berndt A, Lehnert D, Deufel T, Bastmeyer M, Schickel J (2004) Identification of nuclear localisation sequences in spastin (SPG4) using a novel Tetra-GFP reporter system. Biochem Biophys Res Commun 318:1079–1084

    Article  PubMed  CAS  Google Scholar 

  7. Ciccarelli FD, Proukakis C, Patel H, Cross H, Azam S, Patton MA, Bork P, Crosby AH (2003) The identification of a conserved domain in both spartin and spastin, mutated in hereditary spastic paraplegia. Genomics 81:437–441

    Article  PubMed  CAS  Google Scholar 

  8. Errico A, Ballabio A, Rugarli EI (2002) Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet 11:153–163

    Article  PubMed  CAS  Google Scholar 

  9. McDermott CJ, Grierson AJ, Wood JD, Bingley M, Wharton SB, Bushby KM, Shaw PJ (2003) Hereditary spastic paraparesis: disrupted intracellular transport associated with spastin mutation. Ann Neurol 54:748–759

    Article  PubMed  Google Scholar 

  10. Errico A, Claudiani P, D’Addio M, Rugarli EI (2004) Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. Hum Mol Genet 13:2121–2132

    Article  PubMed  CAS  Google Scholar 

  11. Reid E, Connell J, Edwards TL, Duley S, Brown SE, Sanderson CM (2004) The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Genet

  12. Charvin D, Cifuentes-Diaz C, Fonknechten N, Joshi V, Hazan J, Melki J, Betuing S (2003) Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Hum Mol Genet 12:71–78

    Article  PubMed  CAS  Google Scholar 

  13. Wharton SB, McDermott CJ, Grierson AJ, Wood JD, Gelsthorpe C, Ince PG, Shaw PJ (2003) The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 62:1166–1177

    PubMed  CAS  Google Scholar 

  14. Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, Hogan EL, Boustany RM, Vance JM, Nance MA, Pericak-Vance MA, Marchuk DA (2001) Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet 68:1077–1085

    Article  PubMed  CAS  Google Scholar 

  15. Trinczek B, Brajenovic M, Ebneth A, Drewes G (2004) MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J Biol Chem 279:5915–5923

    Article  PubMed  CAS  Google Scholar 

  16. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, Graham FL, Gaskell PC, Dearlove A, Pericak-Vance MA, Rubinsztein DC, Marchuk DA (2002) A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 71:1189–1194

    Article  PubMed  CAS  Google Scholar 

  17. Crosby AH, Proukakis C (2002) Is the transportation highway the right road for hereditary spastic paraplegia? Am J Hum Genet 71:1009–1016

    Article  PubMed  CAS  Google Scholar 

  18. Frickey T, Lupas AN (2004) Phylogenetic analysis of AAA proteins. J Struct Biol 146:2–10

    Article  PubMed  CAS  Google Scholar 

  19. Ahmad FJ, Yu W, McNally FJ, Baas PW (1999) An essential role for katanin in severing microtubules in the neuron. J Cell Biol 145:305–315

    Article  PubMed  CAS  Google Scholar 

  20. Kimble M, Kuriyama R (1992) Functional components of microtubule-organizing centers. Int Rev Cytol 136:1–50

    Article  PubMed  CAS  Google Scholar 

  21. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75:419–429

    Article  PubMed  CAS  Google Scholar 

  22. McNally FJ, Okawa K, Iwamatsu A, Vale RD (1996) Katanin, the microtubule-severing ATPase, is concentrated at centrosomes. J Cell Sci 109:561–567

    PubMed  CAS  Google Scholar 

  23. Horton AC, Ehlers MD (2003) Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 23:6188–6199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant P01 NS26630 to M.P.V. I.K.S. was the recipient of a Ruth K. Broad Biomedical Research Foundation Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Marchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svenson, I.K., Kloos, M.T., Jacon, A. et al. Subcellular localization of spastin: implications for the pathogenesis of hereditary spastic paraplegia. Neurogenetics 6, 135–141 (2005). https://doi.org/10.1007/s10048-005-0219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-005-0219-2

Keywords

Navigation