Skip to main content
Log in

Death of neuronal clusters contributes to variance of age at onset in Huntington’s disease

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by an expanded polyglutamine (polyQ) repeat in the protein huntingtin. Due to selective neuronal loss in the cortex and striatum, HD patients develop various movement disturbances, psychological changes, and dementia. Symptoms usually appear in individuals between 30 and 50 years of age. The principal cause of variability of age at onset (AO) is the length of the polyQ repeat. Several additional genetic factors contributing to the variance have been identified. At least 35% of the variance, however, remains unexplained. Using a stochastic model, we show that the pattern of cell death of striatal neurons might contribute up to 20% of variance of AO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AO:

Age at onset

HD:

Huntington’s disease

polyQ:

Polyglutamine

References

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  2. Duyao M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 5:168–173

    Article  PubMed  Google Scholar 

  3. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, Graham RK, Hayden MR (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  PubMed  CAS  Google Scholar 

  4. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397

    Article  PubMed  CAS  Google Scholar 

  5. Nahhas FA, Garbern J, Krajewski KM, Roa BB, Feldman GL (2005) Juvenile onset Huntington disease resulting from a very large maternal expansion. Am J Med Genet A 137A:328–331

    Article  PubMed  CAS  Google Scholar 

  6. Chattopadhyay B, Baksi K, Mukhopadhyay S, Bhattacharyya NP (2005) Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neurosci Lett 374:81–86

    Article  PubMed  CAS  Google Scholar 

  7. Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, Rosser E, Craufurd D (1997) Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci U S A 94:3872–3876

    Article  PubMed  CAS  Google Scholar 

  8. Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT (2005) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 6:25–28

    Article  PubMed  CAS  Google Scholar 

  9. Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, Brandt J, Gourley LM, Liang K, Zhou H, Margolis RL, Ross CA (2004) Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 63:66–72

    PubMed  CAS  Google Scholar 

  10. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EPJ (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    PubMed  CAS  Google Scholar 

  11. Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ, McInnes RR (2000) A one-hit model of cell death in inherited neuronal degenerations. Nature 406:195–199

    Article  PubMed  CAS  Google Scholar 

  12. Perutz MF, Windle AH (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143–144

    Article  PubMed  CAS  Google Scholar 

  13. Rosas HD, Goodman J, Chen YI, Jenkins BG, Kennedy DN, Makris N, Patti M, Seidman LJ, Beal MF, Koroshetz WJ (2001) Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57:1025–1028

    PubMed  CAS  Google Scholar 

  14. Augood SJ, Faull RL, Emson PC (1997) Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Ann Neurol 42:215–221

    Article  PubMed  CAS  Google Scholar 

  15. Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LHA, Sahakian B, Hodges JR, Rosser AE, Wood NW, Brooks DJ (1999) Huntington’s disease progression: PET and clinical observations. Brain 122:2353–2363

    Article  PubMed  Google Scholar 

  16. Hedreen JC, Folstein SE (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 54:105–120

    PubMed  CAS  Google Scholar 

  17. Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, McCusker E, Frackowiak RS (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828

    Article  PubMed  CAS  Google Scholar 

  18. Heinsen H, Strik M, Bauer M, Luther K, Ulmar G, Gangnus D, Jungkunz G, Eisenmenger W, Gotz M (1994) Cortical and striatal neurone number in Huntington’s disease. Acta Neuropathol (Berl) 88:320–333

    Article  CAS  Google Scholar 

  19. Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, Huang CY, Sherr M, Franz ML, Abbott MH, Hayden MR, Ross CA (2001) Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105:399–403

    Article  PubMed  CAS  Google Scholar 

  20. Kieburtz K, MacDonald M, Shih C, Feigin A, Steinberg K, Bordwell K, Zimmerman C, Srinidhi J, Sotack J, Gusella J (1994) Trinucleotide repeat length and progression of illness in Huntington’s disease. J Med Genet 31:872–874

    Article  PubMed  CAS  Google Scholar 

  21. Margolis RL, Ross CA (2003) Diagnosis of Huntington disease. Clin Chem 49:1726–1732

    Article  PubMed  CAS  Google Scholar 

  22. Squitieri F, Sabbadini G, Mandich P, Gellera C, Di Maria E, Bellone E, Castellotti B, Nargi E, de Grazia U, Frontali M, Novelletto A (2000) Family and molecular data for a fine analysis of age at onset in Huntington disease. Am J Med Genet 95:366–373

    Article  PubMed  CAS  Google Scholar 

  23. Lindsey JK, Jones B (1998) Choosing among generalized linear models applied to medical data. Stat Med 17:59–68

    Article  PubMed  CAS  Google Scholar 

  24. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington’s Disease Collaborative Group (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277

    Article  PubMed  CAS  Google Scholar 

  25. Anca MH, Gazit E, Loewenthal R, Ostrovsky O, Frydman M, Giladi N (2004) Different phenotypic expression in monozygotic twins with Huntington disease. Am J Med Genet A 124:89–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant SFB 618) and the European Commission (BioSim Network, contract LSHB-CT-2004.005137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Bernard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čajavec, B., Herzel, H. & Bernard, S. Death of neuronal clusters contributes to variance of age at onset in Huntington’s disease. Neurogenetics 7, 21–25 (2006). https://doi.org/10.1007/s10048-005-0025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-005-0025-x

Keywords

Navigation