Skip to main content
Log in

Acetate-free blood purification can impact improved nutritional status in hemodialysis patients

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Effects of online hemodiafiltration (HDF) using acetate-free bicarbonate dialysis (AFD) fluid on microinflammation, resulting in improved nutritional status in hemodialysis patients, were examined and compared with conventional acetate-containing bicarbonate dialysis (ACD) fluid. A total of 24 hemodialysis patients were registered for a cross-over design study for a 6-month period. These patients were subjected to ACD for the first 3 months followed by AFD fluid for the latter 3 months. Blood variables of C-reactive protein (CRP), interleukin-6 (IL-6), leptin, neuropeptide Y (NPY), protein catabolic rate (PCR) and %creatinine (Cr) index were determined after the first and last 3-month period. The filters and the conditions of HDF and drug regimens including erythropoiesis-stimulating agents were unchanged throughout the cross-over study. Predialysis blood pH and bicarbonate were significantly higher in the AFD phase than in the ACD phase. Blood CRP and IL-6 levels were significantly decreased in the AFD group compared to the ACD group. Concerning nutritional evaluation, leptin and NPY were significantly lower and higher, respectively, in the AFD phase than in the ACD phase. PCR tended to be higher in the AFD phase than in the ACD phase. A significantly higher %Cr index level was observed in the AFD phase than in the ACD phase. These results suggest that online HDF using AFD fluid contributes to alleviating bioincompatible events associated with microinflammation, leading to improvement in the nutritional status in hemodialysis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stenvinkel P, Heimbürger O, Paultre F, Diczfalusy U, Wang T, Berglund L, Jogestrand T. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55:1899–911.

    Article  PubMed  CAS  Google Scholar 

  2. Owen WF, Lowrie EG. C-reactive protein as an outcome predictor for maintenance hemodialysis patients. Kidney Int. 1998;54:627–36.

    Article  PubMed  CAS  Google Scholar 

  3. Zimmermann J, Herrlinger S, Pruy A, Metzger T, Wanner C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999;55:648–58.

    Article  PubMed  CAS  Google Scholar 

  4. Rashid G, Benchetrit S, Fishman D, Bernheim J. Effect of advanced glycation end-products on gene expression and synthesis of TNF-alpha and endothelial nitric oxide synthase by endothelial cells. Kidney Int. 2004;66:1099–106.

    Article  PubMed  CAS  Google Scholar 

  5. Kültz D. Hyperosmolality triggers oxidative damage in kidney cells. Proc Natl Acad Sci USA. 2004;101:9177–8.

    Article  PubMed  Google Scholar 

  6. Gerardi G, Usberti M, Martini G, Albertini A, Sugherini L, Pompella A, Di LD. Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. Clin Chem Lab Med. 2002;40:104–10.

    Article  PubMed  CAS  Google Scholar 

  7. Kawabata K, Nakai S, Miwa M, Sugiura T, Otsuka Y, Shinzato T, Hiki N, Tomimatsu I, Ushida Y, Hosono F, Maeda K. CD31 expression on leukocytes is downregulated in vivo during hemodialysis. Nephron. 2001;89:153–60.

    Article  PubMed  CAS  Google Scholar 

  8. Kawabata K, Nagake Y, Shikata K, Fukuda S, Nakazono H, Takahashi M, Ichikawa H, Makino H. Soluble P-selectin is released from activated platelets in vivo during hemodialysis. Nephron. 1998;78:148–55.

    Article  PubMed  CAS  Google Scholar 

  9. Filiopoulos V, Vlassopoulos D. Inflammatory syndrome in chronic kidney disease: pathogenesis and influence on outcomes. Inflamm Allergy Drug Targets. 2009;8:369–82.

    PubMed  CAS  Google Scholar 

  10. Aucella F, Vigilante M, Gesuete A, Maruccio G, Specchio A, Gesualdo L. Uraemic itching: do polymethylmethacrylate dialysis membranes play a role? Nephrol Dial Transplant. 2007;22:v8–12.

    Article  PubMed  CAS  Google Scholar 

  11. Bossola M, Sanguinetti M, Scribano D, Zuppi C, Giungi S, Luciani G, Torelli R, Posteraro B, Fadda G, Tazza L. Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:379–85.

    Article  PubMed  CAS  Google Scholar 

  12. Mion CM, Hegstrom RM, Boen ST, Scribner BH. Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. Trans Am Soc Artif Intern Organs. 1964;10:110–5.

    PubMed  CAS  Google Scholar 

  13. Graefe U, Follette WC, Vizzo JE, Goodisman LD, Scribner BH. Reduction in dialysis-induced morbidity and vascular instability with the use of bicarbonate in dialysate. Proc Clin Dial Transplant Forum. 1976;6:203–9.

    PubMed  CAS  Google Scholar 

  14. Grandi, E, Govoni, M, Furini, S, Severi S, Giordano E, Santoro A, Cavalcanti S. Induction of NO synthase 2 in ventricular cardiomyocytes incubated with a conventional bicarbonate dialysis bath. Nephrol Dial Transplant. 2008;23:2192–7.

    Google Scholar 

  15. Amore A, Cirina P, Mitola S, Peruzzi L, Bonaudo R, Gianoglio B, Coppo R. Acetate intolerance is mediated by enhanced synthesis of nitric oxide by endothelial cells. J Am Soc Nephrol. 1997;8:1431–6.

    Google Scholar 

  16. Higuchi T, Yamamoto C, Kuno T, Okada K, Soma M, Fukuda N, Nagura Y, Takahashi S, Matsumoto K. A comparison of bicarbonate hemodialysis, hemodiafiltration, and acetate-free biofiltration on cytokine production. Ther Apher Dial. 2004;8:460–7.

    Article  PubMed  CAS  Google Scholar 

  17. Todeschini M, Macconi D, Fernández NG, Ghilardi M, Anabaya A, Binda E, Morigi M, Cattaneo D, Perticucci E, Remuzzi G, Noris M. Effect of acetate-free biofiltration and bicarbonate hemodialysis on neutrophil activation. Am J Kidney Dis. 2002;40:783–93.

    Article  PubMed  CAS  Google Scholar 

  18. http://www.kidney.org/professionals/kdoqi/guidelines_updates/doqiuphd_appx.html

  19. Hara M. Calculation of protein catabolic rate using pre- and postdialysis blood urea nitrogen concentration. J JSDT. 2000;33:347–52.

    Google Scholar 

  20. http://www.kidney.org/professionals/kdoqi/guidelines_updates/nut_appx02a.html

  21. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41.

    Google Scholar 

  22. National Kidney Foundation. K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2000;35:S1–140.

    Google Scholar 

  23. Weinhold B, Bader A, Poli V, Rüther U. Interleukin-6 is necessary, but not sufficient, for induction of the human C-reactive protein gene in vivo. Biochem J. 1997;325:617–21.

    PubMed  CAS  Google Scholar 

  24. Stenvinkel P, Lindholm B. C-reactive protein in end-stage renal disease: are there reasons to measure it? Blood Purif. 2005;23:72–8.

    Article  PubMed  CAS  Google Scholar 

  25. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–9.

    Article  PubMed  CAS  Google Scholar 

  26. Lee CT, Lee CH, Su Y, Chuang YC, Tsai TL, Cheni JB. The relationship between inflammatory markers, leptin and adiponectin in chronic hemodialysis patients. Int J Artif Organs. 2004;27:835–41.

    PubMed  CAS  Google Scholar 

  27. Lam MF, Leung JC, Lo WK, Tam S, Chong MC, Lui SL, Tse KC, Chan TM, Lai KN. Hyperleptinaemia and chronic inflammation after peritonitis predicts poor nutritional status and mortality in patients on peritoneal dialysis. Nephrol Dial Transplant. 2007;22:1445–50.

    Article  PubMed  CAS  Google Scholar 

  28. Don BR, Rosales LM, Levine NW, Mitch W, Kaysen GA. Leptin is a negative acute phase protein in chronic hemodialysis patients. Kidney Int. 2001;59:1114–20.

    Article  PubMed  CAS  Google Scholar 

  29. Kokot F, Chudek J, Adamczak M, Wieçek A. Interrelationship between plasma leptin concentration and severity of metabolic acidosis in haemodialysed patients with chronical renal failure. Exp Clin Endocrinol Diabetes. 2001;109:370–3.

    Article  PubMed  CAS  Google Scholar 

  30. Zheng F, Qiu X, Yin S, Li Y. Changes in serum leptin levels in chronic renal failure patients with metabolic acidosis. J Ren Nutr. 2001;11:207–11.

    Article  PubMed  CAS  Google Scholar 

  31. Aguilera A, Codoceo R, Bajo MA, Iglesias P, Diéz JJ, Barril G, Cigarrán S, Alvarez V, Celadilla O, Fernández-Perpén A, Montero A, Selgas R. Eating behavior disorders in uremia: a question of balance in appetite regulation. Semin Dial. 2004;17:44–52.

    Article  PubMed  Google Scholar 

  32. Hegbrant J, Mårtensson L, Thysell H, Ekman R, Boberg U. Changes in plasma levels of vasoactive substances during routine acetate and bicarbonate hemodialysis. Clin Nephrol. 1994;41:106–12.

    PubMed  CAS  Google Scholar 

  33. Juarez-Congelosi M, Orellana P, Goldstein SL. Normalized protein catabolic rate versus serum albumin as a nutrition status marker in pediatric patients receiving hemodialysis. J Ren Nutr. 2007;17:269–74.

    Article  PubMed  Google Scholar 

  34. Tomo T, Matsuyama M, Nakata T, Kadota J, Toma S, Koga N, Fukui H, Arizono K, Takamiya T, Matsuyama K, Ueyama S, Shiohira Y, Uezu Y, Higa A. Effect of high fiber density ratio polysulfone dialyzer on protein removal. Blood Purif. 2008;26:347–53.

    Article  PubMed  CAS  Google Scholar 

  35. Desmeules S, Lévesque R, Jaussent I, Leray-Moragues H, Chalabi L, Canaud B. Creatinine index and lean body mass are excellent predictors of long-term survival in haemodiafiltration patients. Nephrol Dial Transplant. 2004;19:1182–9.

    Article  PubMed  Google Scholar 

  36. Kaizu Y, Kimura M, Yoneyama T, Miyaji K, Hibi I, Kumagai H. Interleukin-6 may mediate malnutrition in chronic hemodialysis patients. Am J Kidney Dis. 1998;31:93–100.

    Article  PubMed  CAS  Google Scholar 

  37. Goodman MH. Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med. 1994;205:182–5.

    PubMed  CAS  Google Scholar 

  38. Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy. J Appl Physiol. 2005;98:911–7.

    Article  PubMed  CAS  Google Scholar 

  39. Mitch WE. Mechanisms causing loss of lean body mass in uremia. Adv Nephrol. 1997;26:133–42.

    CAS  Google Scholar 

  40. Lofberg E, Gutierrez A, Anderstam B, Wernerman J, Bergstrom J, Price SR, Mitsh WE, Alvestrand A. Effect of bicarbonate on muscle protein in patients receiving hemodialysis. Am J Kidney Dis. 2006;48:419–29.

    Article  PubMed  Google Scholar 

  41. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20:2075–84.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Matsuyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuyama, K., Tomo, T. & Kadota, Ji. Acetate-free blood purification can impact improved nutritional status in hemodialysis patients. J Artif Organs 14, 112–119 (2011). https://doi.org/10.1007/s10047-010-0551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-010-0551-7

Keywords

Navigation