Skip to main content

Advertisement

Log in

Simulation of the fluid dynamics in artificial aortic roots: comparison of two different types of prostheses

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

As a consequence of the growing number of elderly people, the incidence of degenerative aortic diseases continues to increase. Often, artificial aortic roots are needed to replace the native tissue. Some physical characteristics of the artificial aortic root, however, are quite different from native aorta and need to be optimized. The supposed benefit of a prosthesis with artificial sinuses of Valsalva could first be checked by numerical calculations. Two simplified base geometries were used for simulating the flow and pressure distributions, especially in the coronary arteries. One model approximates the ascending aorta as a tube, and the other uses a design with toroidal dilation of the aortic root to approximate the native geometry of the sinuses of Valsalva. The flow and pressure distributions in both models were compared in the ascending aorta as well as in the right and the left coronary arteries. Both the pressure and the velocity distribution in the coronary artery region were not significantly higher in the model with the sinus design compared to the tube model. The sinus design only slightly increased the mean pressures and the velocities in both the ascending aorta and in the coronary arteries. Higher pressure in the coronary arteries should improve the blood circulation and decrease the risk of a surgery-related coronary incident. The sinus design did not show the hopedfor benefits, and therefore it is only a minor factor in optimizing future aortic root prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kallenbach K, Karck M, Pak D, Salcher R, Khaladj N, Leyh R, Hagl C, Haverich A. Decade of aortic valve-sparing reimplantation: are we pushing the limits too far? Circulation 2005;112(suppl 9):I253–259

    PubMed  Google Scholar 

  2. Kallenbach K, Karck M, Leyh RG, Hagl C, Walles T, Harringer W, Haverich A. Valve-sparing aortic root reconstruction in patients with significant aortic insufficiency. Ann Thorac Surg 2002;74:1765–1768; discussion S92-99

    Article  Google Scholar 

  3. Karck M, Kallenbach K, Hagl C, Rhein C, Leyh R, Haverich A. Aortic root surgery in Marfan syndrome: comparison of aortic valve-sparing reimplantation versus composite grafting. J Thorac Cardiovasc Surg 2004;127:391–398

    Article  PubMed  Google Scholar 

  4. David TE, Feindel CM. An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J Thorac Cardiovasc Surg 1992;103:617–622

    PubMed  CAS  Google Scholar 

  5. Yacoub M, Fagan A, Tassano P, Radley-Smith R. Result of valveconserving operations for aortic regurgitation. Circulation 1983; 68(suppl 3):321

    Google Scholar 

  6. Mingke D, Dresler C, Stone CD, Borst H. Composite graft replacement of the aortic root in 335 patients with aneurysm or dissection. Thorac Cardiovasc Surg 1998;46:12–19

    Article  PubMed  CAS  Google Scholar 

  7. Gott VL, Gillinov AM, Pyeritz RE, Cameron DE, Reitz BA, Greene PS, Stone CD, Ferris RL, Alejo DE, McKusick VA. Aortic root replacement. Risk factor analysis of a seventeen-year experience with 270 patients. J Thorac Cardiovasc Surg 1995;109: 536–545

    Article  PubMed  CAS  Google Scholar 

  8. Isselbacher EM. Diseases of the aorta. In: Braunwald E, Zipes DP, Libby P (eds) Heart disease: a textbook of cardiovascular medicine, vol 2. 6th edn. Philadelphia: W.B. Saunders, 2001; 1422

    Google Scholar 

  9. Lindsay J, DeBakey ME, Beal AC. Diagnosis and treatment of diseases of the aorta. In: Schlant RC, Alexander RW (eds) Hurst’s the heart: arteries and veins. 8th edn. New York: McGraw-Hill, 1994;2163

    Google Scholar 

  10. Schlant RC, Sonnenblick EH. Normal physiology of the cardiovascular system. In: Schlant RC, Alexander RW (eds) Hurst’s the heart: arteries and veins. 8th edn. New York: McGraw-Hill, 1994; 139

    Google Scholar 

  11. De Paulis R, Tomai F, Bertoldo F, Ghini AS, Scaffa R, Nardi P, Chiariello L. Coronary flow characteristics after a Bentall procedure with or without sinuses of Valsalva. Eur J Cardiothorac Surg 2004;26:66–72

    Article  PubMed  Google Scholar 

  12. Granger RA. Fluid mechanics. New York: Dover Publications, 1995

    Google Scholar 

  13. Gursahani S, Ponce E, Nagaraju M, Tatke S. Biofluid dynamics of the artificial heart. In: Goyal MR (ed) Congress on Biofluid Dynamics of Human Body Systems at Biomedical Engineering. Miami: 2003;B1–25

  14. Shim EB, Yeo JY, Ko HJ, Youn CH, Lee YR, Park CY, Min BG, Sun K. Numerical analysis of the three-dimensional blood flow in the Korean artificial heart. Artif Organs 2003;27:49–60

    Article  PubMed  Google Scholar 

  15. Pekkan K, de Zelicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP. Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study. Ann Biomed Eng 2005;33:284–300

    Article  PubMed  Google Scholar 

  16. Song X, Wood HG, Olsen D. Computational fluid dynamics (CFD) study of the 4th-generation prototype of a continuous flow ventricular assist device (VAD). J Biomech Eng 2004;126:180–187

    Article  PubMed  Google Scholar 

  17. Watanabe H, Hisada T, Sugiura S, Okada J, Fukunari H. Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid-structure interaction finite element method. JSME Int J Series C 2002;45:1003–1012

    Article  Google Scholar 

  18. Throckmorton AL, Lim DS, McCulloch MA, Jiang W, Song X, Allaire PE, Wood HG, Olsen DB. Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device. ASAIO J 2005;51:629–635

    Article  PubMed  Google Scholar 

  19. Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 2004;32:1058–1066

    Article  PubMed  Google Scholar 

  20. Ge L, Leo HL, Sotiropoulos F, Yoganathan AP. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 2005; 127:782–797

    Article  PubMed  Google Scholar 

  21. Black MM, Drury PJ. Mechanical and other problems of artificial valves. Curr Top Pathol 1994;86:127–159

    PubMed  CAS  Google Scholar 

  22. Choi CR, Kim CN. Analysis of blood flow interacted with leaflets in MHV in view of fluid-structure interaction. KSME J 2001;15: 613–622

    Google Scholar 

  23. De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. A threedimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 2003;36:103–112

    Article  PubMed  Google Scholar 

  24. Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Di Benedetto G, Del Gaudio C, Barbaro V. Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow. J Biomech 2002;35:1599–1612

    Article  PubMed  CAS  Google Scholar 

  25. Yoganathan AP, Chandran KB, Sotiropoulos F. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 2005;33:1689–1694

    Article  PubMed  Google Scholar 

  26. Leuprecht A, Perktold K, Kozerke S, Boesiger P. Combined CFD and MRI study of blood flow in a human ascending aorta model. Biorheology 2002;39:425–429

    PubMed  Google Scholar 

  27. Saber NR, Wood NB, Gosman AD, Merrifield RD, Yang G-Z, Charrier CL, Gatehouse PD, Firmin DN. Progress towards patientspecific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann Biomed Eng 2003;31:42–52

    Article  PubMed  Google Scholar 

  28. Sankaranarayanan M, Chua LP, Ghista DN, Tan YS. Computational model of blood flow in the aorto-coronary bypass graft. Biomed Eng Online 2005;4:14

    Article  PubMed  Google Scholar 

  29. Makhijani VB, Yang HQ, Dionne PJ, Thubrikar MJ. Threedimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function. ASAIO J 1997;43:M387–392

    Article  PubMed  CAS  Google Scholar 

  30. May-Newman K, Hillen B, Dembitsky W. Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J 2006;52:132–139

    Article  PubMed  Google Scholar 

  31. May-Newman KD, Hillen BK, Sironda CS, Dembitsky W. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J Med Eng Technol 2004;28:105–109

    Article  PubMed  CAS  Google Scholar 

  32. Kiris C, Kwak D, Rogers S, Chang ID. Computational approach for probing the flow through artificial heart devices. J Biomech Eng 1997;119:452–460

    Article  PubMed  CAS  Google Scholar 

  33. King MJ, Corden J, David T, Fisher J. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J Biomech 1996;29:609–618

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph L. Bara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bara, C.L., Verhey, J.F. Simulation of the fluid dynamics in artificial aortic roots: comparison of two different types of prostheses. J Artif Organs 11, 123–129 (2008). https://doi.org/10.1007/s10047-008-0416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-008-0416-5

Keywords

Navigation