Skip to main content
Log in

The development of a multichannel electrode array for retinal prostheses

  • BRIEF COMMUNICATION
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The development of a multielectrode array is the key issue for retinal prostheses. We developed a 10 × 10 platinum electrode array that consists of an 8-µm polyimide layer sandwiched between 5-µm polymonochloro-para-xylylene (parylene-C) layers. Each electrode was formed as a 30-µm-high bump by Pt/Au double-layer electroplating. We estimated the charge delivery capability (CDC) of the electrode by measuring the CDCs of two-channel electrode arrays. The dimensions of each electrode of the two-channel array were the same as those of each electrode formed on the 10 × 10 array. The results suggest that for cathodic-first (CF) pulses, 80% of electrodes surpassed our development target of 318 µC/cm2, which corresponds to the charge density of pulses of 500 µs duration and 200 µA amplitude for a 200-µm-diameter planar electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Santos MS Humayun E de Juan SuffixJr R Greenberg MJ Marsh IB Klock AH Milam (1997) ArticleTitlePreservation of the inner retina in retinits pigmentosa. A morphometric analysis Arch Ophthalmol 115 511–515 Occurrence Handle9109761 Occurrence Handle1:STN:280:ByiB28zovV0%3D

    PubMed  CAS  Google Scholar 

  2. SY Kim S Sadda J Pearlman MS Humayun E de Juan SuffixJr BM Melia WR Green (2002) ArticleTitleMorphometric analysis of the macula in eyes with disciform age-related macular degeneration Retina 22 471–477 Occurrence Handle12172115 Occurrence Handle10.1097/00006982-200208000-00012 Occurrence Handle1:STN:280:DC%2BD38vislKquw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  3. AY Chow VY Chow (1997) ArticleTitleSubretinal electrical stimulation of the rabbit retina Neurosci Lett 225 13–16 Occurrence Handle9143006 Occurrence Handle10.1016/S0304-3940(97)00185-7 Occurrence Handle1:CAS:528:DyaK2sXisVeltLs%3D

    Article  PubMed  CAS  Google Scholar 

  4. AY Chow MT Pardue VY Chow GA Peyman C Liang JI Perlman NS Peachey (2001) ArticleTitleImplantation of silicon chip microphotodiode arrays into the cat subretinal space IEEE Tran Neural Sys Rehab Eng 9 86–95 Occurrence Handle10.1109/7333.918281 Occurrence Handle1:STN:280:DC%2BD38%2FisVKmsg%3D%3D

    Article  CAS  Google Scholar 

  5. E Zrenner A Stett S Weiss RB Aramant E Guenther K Kohler KD Miliczek MJ Seiler H Haemmerle (1999) ArticleTitleCan subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39 2555–2567 Occurrence Handle10396624 Occurrence Handle10.1016/S0042-6989(98)00312-5 Occurrence Handle1:STN:280:DyaK1MzisV2ntA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  6. A Stett W Barth S Weiss H Haemmerle E Zrenner (2000) ArticleTitleElectrical multisite stimulation of the isolated chicken retina Vision Res 40 1785–1795 Occurrence Handle10814763 Occurrence Handle10.1016/S0042-6989(00)00005-5 Occurrence Handle1:STN:280:DC%2BD3czovFyqtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  7. MS Humayun E de Juan SuffixJr JD Weiland G Dagnelie S Katona R Greenberg S Suzuki (1999) ArticleTitlePattern electrical stimulation of the human retina Vision Res 39 2569–2576 Occurrence Handle10396625 Occurrence Handle10.1016/S0042-6989(99)00052-8 Occurrence Handle1:STN:280:DyaK1MzisV2ntQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  8. MS Humayun JD Weiland GY Fujii R Greenberg R Williamson J Little B Mech V Cimmarusti G Boemel G Dagnelie E de Juan SuffixJr (2003) ArticleTitleVisual perception in a blind subject with a chronic microelectronic retinal prosthesis Vision Res 43 2573–2581 Occurrence Handle13129543 Occurrence Handle10.1016/S0042-6989(03)00457-7

    Article  PubMed  Google Scholar 

  9. T Laube T Schanze C Brockmann I Bolle T Stieglitz N Bornfeld (2003) ArticleTitleChronically implanted epidural electrodes in Göttinger minipigs allow functional tests of epiretinal implants Grafe's Arch Clin Exp Ophthalmol 241 1013–1019 Occurrence Handle10.1007/s00417-003-0758-x

    Article  Google Scholar 

  10. P Walter K Heimann (2000) ArticleTitleEvoked cortical potentials after electrical stimulation of the inner retina in rabbits Grafe's Arch Clin Exp Ophthalmol 238 315–318 Occurrence Handle10.1007/s004170050358 Occurrence Handle1:STN:280:DC%2BD3cvitVClsA%3D%3D

    Article  CAS  Google Scholar 

  11. H Kanda T Morimoto T Fujikado Y Tano Y Fukuda H Sawai (2004) ArticleTitleElectrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats Invest Ophthalmol Vis Sci 45 560–566 Occurrence Handle14744899 Occurrence Handle10.1167/iovs.02-1268

    Article  PubMed  Google Scholar 

  12. K Nakauchi T Fujikado H Kanda T Morimoto JS Choi Y Ikuno S Sakaguchi M Kamei M Ohji T Yagi S Nishimura H Sawai Y Fukuda Y Tano (2005) ArticleTitleTransretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes Grafe's Arch Clin Exp Ophthalmol 243 169–174 Occurrence Handle10.1007/s00417-004-1060-2

    Article  Google Scholar 

  13. T Sieglitz H Beutel JU Meyer (1997) ArticleTitleA flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves Sensors Actuators A 60 240–243 Occurrence Handle10.1016/S0924-4247(97)01494-5

    Article  Google Scholar 

  14. JF Rizzo SuffixIII J Wyatt J Lowenstein S Kelly D Shire (2003) ArticleTitleMethods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays Invest Ophthalmol Vis Sci 44 5355–5361 Occurrence Handle14638738 Occurrence Handle10.1167/iovs.02-0819

    Article  PubMed  Google Scholar 

  15. SB Brummer MJ Turner (1977) ArticleTitleElectrical stimulation with Pt electrodes: II Estimation of maximum surface redox (theoretical non-gassing) limits IEEE Trans Biomed Eng 24 440–443 Occurrence Handle892838 Occurrence Handle1:STN:280:CSiB2cfis1U%3D

    PubMed  CAS  Google Scholar 

  16. T Tokuda YL Pan A Uehara K Kagawa M Nunoshita J Ohta (2005) ArticleTitleFlexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture Sensors Actuators A 122 88–98 Occurrence Handle10.1016/j.sna.2005.03.065

    Article  Google Scholar 

  17. JJ Licari (2003) Coating materials for electronic applications Noyes New York

    Google Scholar 

  18. Wolgemuth L. The surface modification properties of parylene for medical applications. Business Brief Med Device Manuf Technol 2002;1–4

  19. HS Noh Y Huang PJ Hesketh (2004) ArticleTitleParylene micromolding, a rapid and low-cost fabrication method for parylene microchannels Sensors Actuators B 102 78–85 Occurrence Handle10.1016/S0925-4005(04)00476-9

    Article  Google Scholar 

  20. SB Brummer MJ Turner (1977) ArticleTitleElectrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes IEEE Trans Biomed Eng 24 59–63 Occurrence Handle851475 Occurrence Handle1:STN:280:CSiD1M3nsFY%3D

    PubMed  CAS  Google Scholar 

  21. TL Rose LS Robblee (1990) ArticleTitleElectrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2-ms pulses IEEE Trans Biomed Eng 37 1118–1120 Occurrence Handle2276759 Occurrence Handle10.1109/10.61038 Occurrence Handle1:STN:280:By6C3MrjsVw%3D

    Article  PubMed  CAS  Google Scholar 

  22. SB Brummer MJ Turner (1977) ArticleTitleElectrical stimulation with Pt electrodes: I A method for determination of “real” electrode areas IEEE Trans Biomed Eng 24 436–439 Occurrence Handle892837 Occurrence Handle1:STN:280:CSiB2cfis1Q%3D

    PubMed  CAS  Google Scholar 

  23. EM Kelliher TL Rose (1989) ArticleTitleEvaluation of charge injection properties of thin film redox materials for use as neural stimulation Mat Res Soc Symp Proc 110 23–27

    Google Scholar 

  24. SF Cogan PR Troyk J Ehrlich TD Plante (2005) ArticleTitleIn vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes IEEE Trans Biomed Eng 52 1612–1614 Occurrence Handle16189975 Occurrence Handle10.1109/TBME.2005.851503

    Article  PubMed  Google Scholar 

  25. JD Weiland DJ Anderson MS Humayun (2002) ArticleTitleIn vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes IEEE Trans Biomed Eng 49 1574–1579 Occurrence Handle12549739 Occurrence Handle10.1109/TBME.2002.805487

    Article  PubMed  Google Scholar 

  26. X Beebe TL Rose (1988) ArticleTitleCharge injection limits of activated iridium oxide electrodes with 0.2-ms pulses in bicarbonate buffered saline IEEE Trans Biomed Eng 35 494–495 Occurrence Handle3397105 Occurrence Handle10.1109/10.2122 Occurrence Handle1:STN:280:BieB1cvns1U%3D

    Article  PubMed  CAS  Google Scholar 

  27. M Janders U Egert M Stelze W Nisch (1996) Novel thin-film titanium nitride microelectrodes with excellent charge transfer capability for cell stimulation and sensing applications Proceedings of the 19th International Conference IEEE/EMBS IEEE Piscataway 1191–1193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Terasawa MS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terasawa, Y., Tashiro, H., Uehara, A. et al. The development of a multichannel electrode array for retinal prostheses. J Artif Organs 9, 263–266 (2006). https://doi.org/10.1007/s10047-006-0352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-006-0352-1

Key words

Navigation