Skip to main content

Advertisement

Log in

Text area segmentation from document images by novel adaptive thresholding and template matching using texture cues

  • Short paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new perspective of text area segmentation from document images using a novel adaptive thresholding for image enhancement. Using sliding windows, the texture of the enhanced image is matched with that of a fixed training template image containing the typed letters ‘dB.’ The affine-invariant, low-dimensional difference theoretic texture feature set is used for the texture measurement. The distance matrix is binarized using Otsu threshold, and the ‘0’ pixels indicate the text area. One primary contribution of this paper is the novel adaptive thresholding for document image enhancement prior to the extraction of texture cues. The proposed adaptive thresholding mimics the ability of the human eye to iteratively adjust to varying light intensities through iterative gamma correction followed by contrast stretching so that the text becomes well defined against the background clutter. The text blobs so segmented are binarized using Yanowitz and Bruckstein method of text binarization, and the results are applied for evaluation with respect to the ground-truth annotations. We tested our algorithm on the benchmark DIBCO 2009, 2010, 2011, 2012, 2013 document image datasets in comparison with the state of the art. The high precision–recall and F-score values establish the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Jamal AT, Suen CY (2013) Shape-based analysis for automatic segmentation of Arabic handwritten text. In: Advances in artificial intelligence, Springer, Berlin, Heidelberg, pp 334–339

  2. Eskenazi S, Gomez-Krämer P, Ogier J-M (2017) A comprehensive survey of mostly textual document segmentation algorithms since 2008. Pattern Recognit 64:1–14

    Article  Google Scholar 

  3. Lucas SM (2005) ICDAR 2005 text locating competition results. In: Eighth international conference on document analysis and recognition, 2005. Proceedings, IEEE, pp 80–84

  4. Bukhari SS, Kadi A, Jouneh MA, Mir FM, Dengel A (2017) anyOCR: an open-source OCR system for historical archives. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR), IEEE, vol 1, pp 305–310

  5. Sulaiman A, Omar K, Nasrudin MF (2017) A database for degraded Arabic historical manuscripts. In: 2017 6th international conference on electrical engineering and informatics (ICEEI), IEEE, pp 1–6

  6. Leedham G, Chen Y et al (2003) Comparison of some thresholding algorithms for text/background segmentation in difficult document images. In: Proceedings of the seventh international conference on document analysis and recognition, vol 2

  7. Likforman-Sulem L, Zahour A, Taconet B (2007) Text line segmentation of historical documents: a survey. Int J Doc Anal Recognit 9(2-4):123–138

    Article  Google Scholar 

  8. Shi Z, Govindaraju V (2004) Historical document image enhancement using background light intensity normalization. In: ICPR 2004, Proceedings of the 17th international conference on pattern recognition, 2004, IEEE, vol 1

  9. Chamchong R, Fung CC (2011) Character segmentation from ancient palm leaf manuscripts in Thailand. In: Proceedings of the 2011 workshop on historical document imaging and processing, ACM

  10. Yuan Q, Tan CW (2001) Text extraction from gray scale document images using edge information. In: Proceedings, sixth international conference on document analysis and recognition, 2001, IEEE

  11. Rumley SD (1990) Document scanner. U.S. Patent 4,961,117. Issued 2 October 1990

  12. Maurer RP, Barash D (2004) Method for enhancing compressibility and visual quality of scanned document images. U.S. Patent 6,731,821. Issued 4 May 2004

  13. Bovik AC, Clark M, Geisler WS (1990) Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell 12(1):55–73

    Article  Google Scholar 

  14. Li M et al (2010) Conditional random field for text segmentation from images with complex background. Pattern Recognit Lett 31(14):2295–2308

    Article  Google Scholar 

  15. Yamron JP, et al (1998) A hidden Markov model approach to text segmentation and event tracking. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, IEEE, vol 1

  16. Chen D, Odobez J-M (2002) Comparison of support vector machine and neural network for text texture verification. IDIAP, Martigny

    Google Scholar 

  17. Fletcher LA, Kasturi R (1988) A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans Pattern Anal Mach Intell 10(6):910–918

    Article  Google Scholar 

  18. Jain AK, Karu K (1996) Learning texture discrimination masks. IEEE Trans Pattern Anal Mach Intell 18(2):195–205

    Article  Google Scholar 

  19. Namboodiri AM, Jain AK (2007) Document structure and layout analysis. In: Chaudhuri BB (ed) Digital document processing. Springer, London, pp 29–48

    Chapter  Google Scholar 

  20. Kim KI, Jung K, Kim JH (2003) Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm. IEEE Trans Pattern Anal Mach Intell 25(12):1631–1639

    Article  Google Scholar 

  21. Jain AK, Zhong Yu (1996) Page segmentation using texture analysis. Pattern Recognit 29(5):743–770

    Article  Google Scholar 

  22. Jain AK, Bhattacharjee S (1992) Text segmentation using Gabor filters for automatic document processing. Mach Vis Appl 5(3):169–184

    Article  Google Scholar 

  23. Ye Q, Huang Q, Gao W, Zhao D (2005) Fast and robust text detection in images and video frames. Image Vis Comput 23(6):565–576

    Article  Google Scholar 

  24. Yanowitz SD, Bruckstein AM (1989) A new method for image segmentation. Comput Vis Graph Image Process 46(1):82–95

    Article  Google Scholar 

  25. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Publishing House of Electronics Industry, Beijing, p 455

    Google Scholar 

  26. Drago F, Myszkowski K, Annen T, Chiba N (2003) Adaptive logarithmic mapping for displaying high contrast scenes. Comput Graph Forum 22(3):419–426

    Article  Google Scholar 

  27. Iida H, King P-S (1983) Video system having an adjustable digital Gamma correction for contrast enhancement. U.S. Patent 4,394,688. Issued 19 July 1983

  28. Jennifer Ranjani J (2014) Bi-level thresholding for binarisation of handwritten and printed documents. IET Comput Vis 9(1):41–50

    Article  Google Scholar 

  29. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernet 9(1):62–66

    Article  Google Scholar 

  30. Zhang H, Liu G, Chow TWS, Liu W (2011) Textual and visual content-based anti-phishing: a Bayesian approach. IEEE Trans Neural Netw 22(10):1532–1546

    Article  Google Scholar 

  31. Susan S, Hanmandlu M (2013) Difference theoretic feature set for scale-, illumination-and rotation-invariant texture classification. IET Image Process 7(8):725–732

    Article  Google Scholar 

  32. Susan S, Hanmandlu M (2013) A non-extensive entropy feature and its application to texture classification. Neurocomputing 120:214–225

    Article  Google Scholar 

  33. Cross GR, Jain AK (1983) Markov random field texture models. IEEE Trans Pattern Anal Mach Intell 1:25–39

    Article  Google Scholar 

  34. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560

    Article  MathSciNet  Google Scholar 

  35. Ojala T, Pietikaenen M, Maenepae T (2002) Multi-resolution gray scale and rotation invariant texture classification with LBP. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  36. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance with global matching. Pattern Recognit 43:706–719

    Article  MATH  Google Scholar 

  37. Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vis 43(1):29–44

    Article  MATH  Google Scholar 

  38. https://in.mathworks.com/matlabcentral/fileexchange/70290-dttf-difference-theoretic-texture-features. Accessed 14 Feb 2019

  39. https://in.mathworks.com/matlabcentral/fileexchange/70291-adaptive-thresholding-for-document-images. Accessed 15 Feb 2019

  40. Gatos B, Ntirogiannis K, Pratikakis I (2009) ICDAR 2009 document image binarization contest (DIBCO 2009). In: ICDAR, vol 9, pp 1375–1382

  41. Pratikakis I, Gatos B, Ntirogiannis K (2010) H-DIBCO 2010-handwritten document image binarization competition. In: 2010 international conference on frontiers in handwriting recognition (ICFHR), IEEE, pp 727–732

  42. Pratikakis I, Gatos B, Ntirogiannis K (2012) ICFHR 2012 competition on handwritten document image binarization (H-DIBCO 2012). In: 2012 international conference on frontiers in handwriting recognition (ICFHR), IEEE, pp 817–822

  43. Pratikakis I, Gatos B, Ntirogiannis K (2013) ICDAR 2013 document image binarization contest (DIBCO 2013). In: 2013 12th international conference on document analysis and recognition (ICDAR), IEEE, pp 1471–1476

  44. Trier OD, Taxt T (1995) Evaluation of binarization methods for document images. IEEE Trans Pattern Anal Mach Intell 17(3):312–315

    Article  Google Scholar 

  45. Niblack W (1985) An introduction to digital image processing. Strandberg Publishing Company, Birkeroed

    Google Scholar 

  46. http://www.mathworks.in/matlabcentral/fileexchange/40849-niblack-local-image-thresholding. Accessed 14 Feb 2019

  47. Sauvola J, Pietikäinen M (2000) Adaptive document image binarization. Pattern Recognit 33(2):225–236

    Article  Google Scholar 

  48. http://www.mathworks.in/matlabcentral/fileexchange/40266-sauvola-local-image-thresholding. Accessed 14 Feb 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seba Susan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susan, S., Rachna Devi, K.M. Text area segmentation from document images by novel adaptive thresholding and template matching using texture cues. Pattern Anal Applic 23, 869–881 (2020). https://doi.org/10.1007/s10044-019-00811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00811-5

Keywords

Navigation