Skip to main content

Advertisement

Log in

Accurate image segmentation using Gaussian mixture model with saliency map

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Gaussian mixture model (GMM) is a flexible tool for image segmentation and image classification. However, one main limitation of GMM is that it does not consider spatial information. Some authors introduced global spatial information from neighbor pixels into GMM without taking the image content into account. The technique of saliency map, which is based on the human visual system, enhances the image regions with high perceptive information. In this paper, we propose a new model, which incorporates the image content-based spatial information extracted from saliency map into the conventional GMM. The proposed method has several advantages: It is easy to implement into the expectation–maximization algorithm for parameters estimation, and therefore, there is only little impact in computational cost. Experimental results performed on the public Berkeley database show that the proposed method outperforms the state-of-the-art methods in terms of accuracy and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning, Boston

    Google Scholar 

  2. McLachlan G, Peel D (2004) Finite mixture models. Wiley, New York

    MATH  Google Scholar 

  3. Bishop CM (2006) Pattern recognition and machine Learning 128

  4. Bouguila N (2011) Count data modeling and classification using finite mixtures of distributions. IEEE Trans Neural Netw 22(2):186–198

    Article  Google Scholar 

  5. Yuksel SE, Wilson JN, Gader PD (2012) Twenty years of mixture of experts. IEEE Trans Neural Netw Learn Syst 23(8):1177–1193

    Article  Google Scholar 

  6. Allili MS, Bouguila N, Ziou D (2007) A robust video foreground segmentation by using generalized gaussian mixture modeling. In: Fourth Canadian conference on computer and robot vision, 2007. CRV’07. IEEE, pp 503–509

  7. Allili MS, Bouguila N, Ziou D (2007) Finite generalized Gaussian mixture modeling and applications to image and video foreground segmentation. In: Fourth Canadian conference on computer and robot vision, 2007. CRV’07. IEEE, pp 183–190

  8. Bouwmans T, El Baf F, Vachon B (2008) Background modeling using mixture of gaussians for foreground detection-a survey. Recent Patents Comput Sci 1(3):219–237

    Article  Google Scholar 

  9. El Baf F, Bouwmans T, Vachon B (2008) Type-2 fuzzy mixture of Gaussians model: application to background modeling. In: International symposium on visual computing. Springer, pp 772–781

  10. Shah M, Deng J, Woodford B (2012) Illumination invariant background model using mixture of Gaussians and SURF features. In: Asian Conference on Computer Vision. Springer, pp 308–314

  11. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodolog) 39:1–38

    MathSciNet  MATH  Google Scholar 

  12. Bilmes JA (1998) A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Int Comput Sci Inst 4(510):126

    Google Scholar 

  13. Denœux T (2011) Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets Syst 183(1):72–91

    Article  MathSciNet  MATH  Google Scholar 

  14. McLachlan G, Krishnan T (2007) The EM algorithm and extensions, vol 382. Wiley, New York

    MATH  Google Scholar 

  15. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  16. Blekas K, Likas A, Galatsanos NP, Lagaris IE (2005) A spatially constrained mixture model for image segmentation. IEEE Trans Neural Netw 16(2):494–498

    Article  Google Scholar 

  17. Nguyen TM, Wu QJ (2012) Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem. IEEE Trans Syst Man Cybern Part B (Cybernetics) 42(1):193–202

    Article  Google Scholar 

  18. Chatzis SP, Varvarigou TA (2008) A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans Fuzzy Syst 16(5):1351–1361

    Article  Google Scholar 

  19. Diplaros A, Vlassis N, Gevers T (2007) A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans Neural Netw 18(3):798–808

    Article  Google Scholar 

  20. Sanjay-Gopal S, Hebert TJ (1998) Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process 7(7):1014–1028

    Article  Google Scholar 

  21. Tang H, Dillenseger J-L, Bao XD, Luo LM (2009) A vectorial image soft segmentation method based on neighborhood weighted Gaussian mixture model. Comput Med Imaging Graph 33(8):644–650

    Article  Google Scholar 

  22. Zhang H, Wu QJ, Nguyen TM (2013) Image segmentation by a robust modified gaussian mixture model. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 1478–1482

  23. Zhang H, Wu QJ, Nguyen TM (2013) Incorporating mean template into finite mixture model for image segmentation. IEEE Trans Neural Netw Learn Syst 24(2):328–335

    Article  Google Scholar 

  24. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  Google Scholar 

  25. Cheng M-M, Mitra NJ, Huang X, Torr PH, Hu S-M (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  26. Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: the need for attention to perceive changes in scenes. Psychol Sci 8(5):368–373

    Article  Google Scholar 

  27. Rensink RA, Enns JT (1995) Preemption effects in visual search: evidence for low-level grouping. Psychol Rev 102(1):101

    Article  Google Scholar 

  28. Rensink RA (2000) Seeing, sensing, and scrutinizing. Vision Res 40(10):1469–1487

    Article  Google Scholar 

  29. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  30. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207

    Article  Google Scholar 

  31. Walther D, Itti L, Riesenhuber M, Poggio T, Koch C (2002) Attentional selection for object recognition—a gentle way. In: International workshop on biologically motivated computer vision. Springer, pp 472–479

  32. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE, pp 1–8

  33. Ruderman DL (1994) The statistics of natural images. Netw Comput Neural Syst 5(4):517–548

    Article  MATH  Google Scholar 

  34. Srivastava A, Lee AB, Simoncelli EP, Zhu S-C (2003) On advances in statistical modeling of natural images. J Math Imag Vis 18(1):17–33

    Article  MathSciNet  MATH  Google Scholar 

  35. Krinidis S, Chatzis V (2010) A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  MATH  Google Scholar 

  36. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of eighth IEEE international conference on computer vision, 2001. ICCV 2001. IEEE, pp 416–423

  37. Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929–944

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grants 61271312, 61201344, 61401085, 31571001 and 81530060; by Natural Science Foundation of Jiangsu Province under Grants BK2012329, BK2012743, BK20150647, DZXX-031, BY2014127-11; by the ‘333’ Project under Grant BRA2015288; and by the Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Tang, H., Yang, G. et al. Accurate image segmentation using Gaussian mixture model with saliency map. Pattern Anal Applic 21, 869–878 (2018). https://doi.org/10.1007/s10044-017-0672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-017-0672-1

Keywords

Navigation