Skip to main content
Log in

High-dimensional image data feature extraction by double discriminant embedding

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

We propose a supervised feature extraction method in this paper that uses two successive transformations to produce the extracted features. The first projection maximizes the difference between spectral features. Thus, produced features have minimum overlap in the new feature space. The second projection maximizes the discrimination between classes. The proposed method, which is called double discriminant embedding (DDE), uses just the first statistics of data. Thus, DDE has good efficiency using limited training samples. The experimental results on four popular hyperspectral images show the better efficiency of DDE in comparison with LDA, GDA, NWFE, and supervised LPP methods in small sample size situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M, Tilton JC, Trianni G (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113(suppl. 1):110–122

    Article  Google Scholar 

  2. Hughes GF (1968) On the mean accuracy of statistical pattern recognition. IEEE Trans Inf Theory 14(1):55–63

    Article  Google Scholar 

  3. Ladha L, Deepa T (2011) Feature selection methods and algorithms. Int J Comp Sci Eng 3(5):1787–1797

    Google Scholar 

  4. Yin J, Wang Y, Hu J (2012) A new dimensionality reduction algorithm for hyperspectral image data using evolutionary strategy. IEEE Trans Ind Inf 8(4):935–943

    Article  Google Scholar 

  5. Bruzzone L, Persello C (2009) A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability. IEEE Trans Geosci Remote Sens 47(9):3180–3191

    Article  Google Scholar 

  6. Jia X, Kuo BC, Crawford M (2013) Feature mining for hyperspectral image classification. Proc IEEE 101(3):676–697

    Article  Google Scholar 

  7. Zhang Q, Tian Y, Yang Y, Pan C (2015) Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning. IEEE Trans Geosci Remote Sens 53(1):261–279

    Article  Google Scholar 

  8. Yuan Y, Zhu G, Wang Q (2015) Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans Geosci Remote Sens 53(2):631–644

    Article  Google Scholar 

  9. Zhang L, Zhang L, Tao D, Huang X (2013) Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction. IEEE Trans Geosci Remote Sens 51(1):242–256

    Article  Google Scholar 

  10. Imani M, Ghassemian H (2014) Band clustering-based feature extraction for classification of hyperspectral images using limited training samples. IEEE Geosci Remote Sens Lett 11(8):1325–1329

    Article  Google Scholar 

  11. Wen J, Tian Z, Liu X, Lin W (2013) Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification. IEEE J Sel Top Appl Earth Observations Remote Sens 6(2):759–768

    Article  Google Scholar 

  12. Kamandar M, Ghassemian H (2013) Linear feature extraction for hyperspectral images based on information theoretic learning. IEEE Geosci Remote Sens Lett 10(4):702–706

    Article  Google Scholar 

  13. Chang YL, Liu JN, Han CC, Chen YN (2014) Hyperspectral image classification using nearest feature line embedding approach. IEEE Trans Geosci Remote Sens 52(1):278–287

    Article  Google Scholar 

  14. Hsu PH, Tseng YH, Gong P (2002) Dimension reduction of hyperspectral images for classification applications. Geogr Inf Sci 8(1):1–8

    Google Scholar 

  15. Imani M, Ghassemian H (2015) Feature space discriminant analysis for hyperspectral data feature reduction. ISPRS J Photogrammetry Remote Sens 102:1–13

    Article  Google Scholar 

  16. Yin J, Gao C, Jia X (2012) Using hurst and lyapunov exponent for hyperspectral image feature extraction. IEEE Geosci Remote Sens Lett 9(4):705–709

    Article  Google Scholar 

  17. Zortea M, Haertel V, Clarke R (2007) Feature extraction in remote sensing high-dimensional image data. IEEE Geosci Remote Sens Lett 4(1):107–111

    Article  Google Scholar 

  18. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, San Diego

    MATH  Google Scholar 

  19. Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12:2385–2404

    Article  Google Scholar 

  20. Kuo BC, Landgrebe DA (2004) Nonparametric weighted feature extraction for classification. IEEE Trans Geosci Remote Sens 42(5):1096–1105

    Article  Google Scholar 

  21. He XF, Niyogi P (2004) Locality preserving projections. In: Proceedings Advanced Neural Information Processing System, 16:153–160

  22. Landgrebe DA (2003) Signal theory methods in multispectral remote sensing. Wiley, Hoboken

    Book  Google Scholar 

  23. Li J, Bioucas-Dias JM, Plaza A (2012) Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans Geosci Remote Sens 50(3):809–823

    Article  Google Scholar 

  24. Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

    Article  Google Scholar 

  25. Cohen J (1960) A coefficient of agreement from nominal scales. Edu Psychol Meas 20(1):37–46

    Article  Google Scholar 

  26. Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens 70(5):627–633

    Article  Google Scholar 

  27. Chang C, Linin C (2008) LIBSVM—a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ghassemian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imani, M., Ghassemian, H. High-dimensional image data feature extraction by double discriminant embedding. Pattern Anal Applic 20, 473–484 (2017). https://doi.org/10.1007/s10044-015-0513-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0513-z

Keywords

Navigation