Skip to main content
Log in

Legendre moment invariants to blur and affine transformation and their use in image recognition

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The processing of the images simultaneously degraded by blur and affine transformation has become a key task in many applications and many novel methods are designed specifically for it in which the moment-based methods play an important role. However, the existing moment-based methods all resort to non-orthogonal moments invariants which have problem of information redundancy and are sensitive to noise. In this paper, we construct a new set of combined invariants of orthogonal Legendre moments which hold for blur and affine transformation together. The experimental results show that the proposed invariants have better discriminative power and robustness to noise with the comparison to other invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banham MR, Katsaggelos AK (1997) Digital image restoration. IEEE Signal Proc Mag 14(2):24–41

    Article  Google Scholar 

  2. Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recogn 26(1):167–174

    Article  MathSciNet  Google Scholar 

  3. Reiss TH (1991) The revised fundamental theorem of moment invariants. IEEE Trans Pattern Anal Mach Intell 13(8):830–834

    Article  Google Scholar 

  4. Flusser J, Suk T (1994) A moment-based approach to registration of images with affine geometric distortion. IEEE Trans Geosci Remote 32(2):382–387

    Article  Google Scholar 

  5. Dai X, Khorram S (1999) A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Trans Geosci Remote 37(5):2351–2362

    Article  Google Scholar 

  6. Rothe I, Susse H, Voss K (1996) The method of normalization to determine invariants. IEEE Trans Pattern Anal Mach Intell 18(4):366–375

    Article  Google Scholar 

  7. Hosny KM (2008) On the computational aspects of affine moment invariants for gray-scale images. Appl Math Comput 195(2):762–771

    Article  MATH  MathSciNet  Google Scholar 

  8. Suk T, Flusser J (2005) Affine normalization of symmetric objects. Adv Concepts Intell Vis Syst, LNCS 3708:100–107

    Article  Google Scholar 

  9. Heikkilä J (2004) Pattern matching with affine moment descriptors. Pattern Recogn 37(9):1825–1834

    Article  MATH  Google Scholar 

  10. Flusser J, Suk T (1998) Degraded image analysis: an invariant approach. IEEE Trans Pattern Anal Mach Intell 20(6):590–603

    Article  Google Scholar 

  11. Flusser J, Zitova B (1999) Combined invariants to linear filtering and rotation. Int J Pattern Recogn Arti Intell 13(8):1123–1135

    Article  Google Scholar 

  12. Zitova B, Flusser J (2002) Estimation of camera planar motion from defocused images. In: Proceedings of the IEEE International Conference on Image Processing, pp 329–332

  13. Bentoutou Y, Taleb N, El Mezouar MC, Taleb M, Jetto L (2002) An invariant approach for image registration in digital subtraction angiography. Pattern Recogn 35(12):2853–2865

    Article  MATH  Google Scholar 

  14. Flusser J, Boldyš J, Zitová B (2003) Moment forms invariant to rotation and blur in arbitrary number of dimensions. IEEE Trans Pattern Anal Mach Intell 13(8):1123–1136

    Google Scholar 

  15. Zhang Y, Wen C, Zhang Y, Soh YC (2002) Determination of blur and affine combined invariants by normalization. Pattern Recogn 35(1):211–221

    Article  MATH  Google Scholar 

  16. Suk T, Flusser J (2003) Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recogn 36(12):2895–2907

    Article  MATH  Google Scholar 

  17. Teague M (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    Article  MathSciNet  Google Scholar 

  18. Zhu H, Liu M (2010) Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal Appl 13(3):309–319

    Article  MathSciNet  Google Scholar 

  19. Zhang H, Shu H, Han GN, Coatrieux G, Luo L, Coatrieux JL (2010) Blurred image recognition by Legendre moment invariants. IEEE Trans Image Process 19(3):596–611

    Article  MathSciNet  Google Scholar 

  20. Zhang H, Shu H, Coatrieux G, Zhu J, Wu QMJ, Zhang Y, Zhu H, Luo L (2011) Affine Legendre moment invariants for image watermarking robust to geometric distortions. IEEE Trans Image Process 20(8):2189–2199

    Article  MathSciNet  Google Scholar 

  21. Shu H, Zhou J, Han GN, Luo L, Coatrieux JL (2007) Image reconstruction from limited range projections using orthogonal moments. Pattern Recogn 40(2):670–680

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Pew Thian Yap for providing the MINST database. This work is supported by the Starting Scientific Research Foundation of Nanjing University of Posts and Telecommunications for New Teachers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiubin Dai.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Since μ(I 00, …, I pq ) is a combination of blur invariants I ij only, it is also invariant to blur distortion. To validate its invariance to affine transformation, we need to prove that

$$ \frac{{\partial \mu (I_{00} , \ldots ,I_{pq} )}}{\partial a} \equiv \sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {\frac{{\partial \mu (I_{00} , \ldots ,I_{pq} )}}{{\partial I_{ij} }}} } \frac{{\partial I_{ij} }}{\partial a} = 0 $$
(25)

for each parameter a \( \in \){a 11, a 12, a 21, a 22, b 11, b 12} of the affine transform.

As μ(L 00, …, L pq ) is invariant to affine transform, we have

$$ \frac{{\partial \mu (L_{00} , \ldots ,L_{pq} )}}{\partial a} \equiv \sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {\frac{{\partial \mu (L_{00} , \ldots ,L_{pq} )}}{{\partial L_{ij} }}} } \frac{{\partial L_{ij} }}{\partial a} = 0 $$
(26)

Thus, to verify the affine invariance of μ(I 00,…, I pq ), it is sufficient to prove

$$ \frac{{\partial I_{ij} }}{\partial a} = \frac{{\partial L_{ij} }}{\partial a}\left| {_{I = L} } \right. $$
(27)

As the affine transform can be decomposed into four transformations which are described in Sect. 3.1, we need to prove that (27) holds for each of these transformations. Obviously, (27) holds for translation in (12). Therefore, we only need to validate the other three transformations.

1.1 A. X-shearing

For X-shearing transformation, we have

$$ \frac{{\partial L_{pq} }}{\partial \beta } = \frac{\partial }{\partial \beta }\int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {P_{p} (u)P_{q} (v)\ddot{f}(u,v)dudv} } = \frac{\partial }{\partial \beta }\int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {P_{p} (x + \beta y)P_{q} (y)f(x,y)dxdy} } $$
(28)

Substitution of (2) into (28) leads to

$$ \begin{aligned} \frac{{\partial L_{pq} }}{\partial \beta } & = \frac{\partial }{\partial \beta }\int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {\sum\limits_{m = 0}^{p} {c_{p,m} (x + \beta y)^{m} \sum\limits_{n = 0}^{q} {c_{q,n} y^{n} f(x,y){\text{d}}x{\text{d}}y} } } } \\ & = \int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {\sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {c_{p,m} c_{q,n} m(x + Ty)^{m - 1} y^{n + 1} f(x,y){\text{d}}x{\text{d}}y} } } } \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {c_{p,m} c_{q,n} m\int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {u^{m - 1} v^{n + 1} \ddot{f}(u,v){\text{d}}u{\text{d}}v} } } } \\ \end{aligned} $$
(29)

Using (5), (29) can be rewritten as

$$ \begin{aligned} \frac{{\partial L_{pq} }}{\partial \beta } & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {c_{p,m} c_{q,n} m\int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {\sum\limits_{i = 0}^{m - 1} {d_{m - 1,i} P_{i} (u)\sum\limits_{j = 0}^{n + 1} {d_{n + 1,j} P_{j} (v)} } \ddot{f}(u,v){\text{d}}u{\text{d}}v} } } } \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {mc_{p,m} c_{q,n} \sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n + 1} {d_{m - 1,i} d_{n + 1,j} } } \int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {P_{i} (u)P_{j} (v)\ddot{f}(u,v){\text{d}}u{\text{d}}v} } } } \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,i} d_{n + 1,j} L_{ij} } } } } \\ \end{aligned} $$
(30)

In order to validate (27) for X-shearing transformation, we need to prove

$$ \frac{{\partial I_{pq} }}{\partial \beta } = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,i} d_{n + 1,j} I_{ij} } } } } $$
(31)

In the next procedures, we will use induction principle to prove (31). It can be easily verified that (31) is true for p + q = 1, because in that case I pq is equal to L pq . For p + q = 3, we have four cases to be considered: p = 3, q = 0; p = 2, q = 1; p = 1, q = 2; p = 0, q = 3. Now the proof for p = 2, q = 1 is given as follows, while other cases can be validated in a similar way.

From the definition of blur invariants given in (10) and (30), we have

$$ \begin{aligned} \frac{{\partial I_{21} }}{\partial \beta } = & \sum\limits_{m = 0}^{2} {\sum\limits_{n = 0}^{1} {\sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n + 1} {mc_{2,m} c_{1,n} d_{m - 1,i} d_{n + 1,j} L_{ij} } } } } \\ & - \frac{1}{{2L_{00} }}\mathop{\sum\limits_{i = 0}^{2} {\sum\limits_{j = 0}^{1} {} } }\limits_{0 <i + j< 3} \sum\limits_{s = 0}^{2 - i} \sum\limits_{t = 0}^{1 - j} A(2,1,i,j,s,t)\\&\times\left[ {\frac{\partial I(i,j)}{\partial \beta }L_{st} + I(i,j)\frac{{\partial L_{st} }}{\partial \beta }} \right] \\ \end{aligned} $$
(32)

To prove that (31) holds for p = 2, q = 1, it is sufficient to prove

$$ \frac{{\partial I_{21} }}{\partial \beta } - \sum\limits_{m = 0}^{2} {\sum\limits_{n = 0}^{1} {\sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n + 1} {mc_{2,m} c_{1,n} d_{m - 1,i} d_{n + 1,j} I_{ij} } } } } = 0 $$
(33)

Based on Theorem 1 and (30), we have

$$ \begin{aligned} \frac{{\partial L_{00} }}{\partial \beta } & = 0,\;\frac{{\partial L_{10} }}{\partial \beta } = c_{11} c_{00} d_{00} d_{10} L_{00} + c_{11} c_{00} d_{00} d_{11} L_{01} ,\;\frac{{\partial L_{01} }}{\partial \beta } = 0 \\ I_{12} & = L_{12} - \frac{1}{{2L_{00} }}\{ I_{01} [L_{00} A(1,2,0,1,0,0) + L_{01} A(1,2,0,1,0,1) + L_{10} A(1,2,0,1,1,0) \\ & \quad + L_{11} A(1,2,0,1,1,1)] + I_{10} [L_{00} A(1,2,1,0,0,0) + L_{01} A(1,2,1,0,0,1) + L_{02} A(1,2,1,0,0,2)\} \\ \end{aligned} $$
(34)
$$ L_{00} = I_{00} ,\;L_{01} = I_{01} ,\;L_{10} = I_{10} $$

Substituting (30) and (34) into (33) leads to

$$ \frac{{\partial I_{21} }}{\partial \beta } = \sum\limits_{m = 0}^{2} {\sum\limits_{n = 0}^{1} {\sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n + 1} {mc_{2,m} c_{1,n} d_{m - 1,i} d_{n + 1,j} I_{ij} } } } } $$
(35)

Then, the case of p = 2, q = 1 is proved.

Assume that (31) holds for all invariants of order less than p + q, next we will consider the case of p + q.

Using Theorem 1, we can achieve

$$ \begin{aligned} \frac{{\partial I_{pq} }}{\partial \beta } &= \frac{{\partial L_{p,q} }}{\partial \beta } - \frac{1}{{2L_{00} }}\mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\left[ {\frac{{\partial (L_{st} )}}{\partial \beta }I_{ij} + L_{s,t} \frac{{\partial I_{ij} }}{\partial \beta }} \right] \cdot } A(p,q,i,j,s,t)} \\ &= \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{\omega = 0}^{m - 1} {\sum\limits_{\varepsilon = 0}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,\omega } d_{n + 1,\varepsilon } L_{\omega \varepsilon } } } } }\\&\quad - \frac{1}{{2L_{00} }}\mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q}\\&\quad \times \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\left[ {\sum\limits_{g = 0}^{s} {\sum\limits_{h = 0}^{t} {\sum\limits_{\tau = 0}^{g - 1} {\sum\limits_{\rho = 0}^{h + 1} {gc_{sg} c_{th} d_{g - 1,\tau } d_{h + 1,\rho } L_{\tau \rho } } } } } I_{ij} } \right.} } \\ &\quad \left. { + L_{s,t} \sum\limits_{\lambda = 0}^{i} {\sum\limits_{\sigma = 0}^{j} {\sum\limits_{w = 0}^{\lambda - 1} {\sum\limits_{b = 0}^{\sigma + 1} {\lambda c_{i,\lambda } c_{j,\sigma } d_{\lambda - 1,w} d_{\sigma + 1,b} I_{wb} } } } } } \right] \cdot A(p,q,i,j,s,t) \\ \end{aligned} $$
(36)

Let

$$ \frac{{\partial \hat{I}_{pq} }}{\partial \beta } = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,i} d_{n + 1,j} I_{ij} } } } } $$
(37)

If we can prove \( \frac{{\partial I_{pq} }}{\partial \beta } - \frac{{\partial \hat{I}_{pq} }}{\partial \beta } = 0 \), then (31) is true for the case of p + q. From Theorem 1, we can deduced that

$$ \begin{aligned} \frac{{\partial \hat{I}_{pq} }}{\partial \beta } & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{e = 0}^{m - 1} {\sum\limits_{r = 0}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,e} d_{n + 1,r} } } } } L_{er} \\ & \;\;\;\; - \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{e = 0}^{m - 1} {\sum\limits_{r = 0}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,e} d_{n + 1,r} } } } } \frac{1}{{2L_{00} }}\mathop {\sum\limits_{i = 0}^{e} {\sum\limits_{j = 0}^{r} {} } }\limits_{0 < i + j < e + r} I_{ij} \sum\limits_{s = 0}^{e - i} {\sum\limits_{t = 0}^{r - j} {L_{s,t} } A(e,r,i,j,s,t)} \\ \end{aligned} $$
(38)

Thus

$$ \begin{aligned} \frac{{\partial \hat{I}_{{pq}} }}{{\partial \beta }} - \frac{{\partial I_{{pq}} }}{{\partial \beta }} & = \frac{1}{{2L_{{00}} }}\mathop {\sum\limits_{{i = 0}}^{p} {\sum\limits_{{j = 0}}^{q} {} } }\limits_{{0 < i + j < p + q}} \sum\limits_{{s = 0}}^{{p - i}} {\sum\limits_{{t = 0}}^{{q - j}} {[\sum\limits_{{g = 0}}^{s} {\sum\limits_{{h = 0}}^{t} {\sum\limits_{{\tau = 0}}^{{g - 1}} {\sum\limits_{{\rho = 0}}^{{h + 1}} {gc_{{s,g}} c_{{t,h}} d_{{g - 1,\tau }} d_{{h + 1,\rho }} L_{{\tau \rho }} } } } } I_{{ij}} } } \\ & + L_{{s,t}} \sum\limits_{{\lambda = 0}}^{i} {\sum\limits_{{\sigma = 0}}^{j} {\sum\limits_{{w = 0}}^{{\lambda - 1}} {\sum\limits_{{b = 0}}^{{\sigma + 1}} {\lambda c_{{i,\lambda }} c_{{j,\sigma }} d_{{\lambda - 1,w}} d_{{\sigma + 1,b}} I_{{wb}} ] \cdot } } } } A(p,q,i,j,s,t) \\ & - \sum\limits_{{m = 0}}^{p} {\sum\limits_{{n = 0}}^{q} {\sum\limits_{{e = 0}}^{{m - 1}} {\sum\limits_{{r = 0}}^{{n + 1}} {mc_{{pm}} c_{{qn}} d_{{m - 1,e}} d_{{n + 1,r}} } } } } \frac{1}{{2L_{{00}} }}\mathop {\sum\limits_{{i = 0}}^{e} {\sum\limits_{{j = 0}}^{r} {} } }\limits_{{0 < i + j < e + r}} I_{{ij}} \sum\limits_{{s = 0}}^{{e - i}} {\sum\limits_{{t = 0}}^{{r - j}} {L_{{s,t}} } A(e,r,i,j,s,t)} \\ \end{aligned} $$
(39)

Define the first item of right side in (39) as follows:

$$ A = \mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\sum\limits_{g = 0}^{s} {\sum\limits_{h = 0}^{t} {\sum\limits_{\tau = 0}^{g - 1} {\sum\limits_{\rho = 0}^{h + 1} {gc_{s,g} c_{t,h} d_{g - 1,\tau } d_{h + 1,\rho } L_{\tau \rho } } } } } I_{ij} A(p,q,i,j,s,t)} } $$
(40)

Let p = p + 1 and q = q− 1, we can rewrite A as:

$$ A = \mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {\left[ {\sum\limits_{g = 0}^{s} {\sum\limits_{h = 0}^{t} {\sum\limits_{\tau = 0}^{g - 1} {\sum\limits_{\rho = 0}^{h + 1} {gc_{s,g} c_{t,h} d_{g - 1,\tau } d_{h + 1,\rho } L_{\tau \rho } A(p - 1,q + 1,i,j,s,t)} } } } } \right.} }, $$

and we also give that

$$ A^{'} = \mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {L_{st} \sum\limits_{\tau = s + 1}^{p - i} {\sum\limits_{\rho = t - 1}^{q - j} {\sum\limits_{g = s + 1}^{\tau } {\sum\limits_{h = t - 1}^{\rho } {gc_{\tau ,g} c_{\rho ,h} d_{g - 1,s} d_{h + 1,t} A(p,q,i,j,\tau ,\rho )} } } } } } $$
(41)

Then

$$ \begin{aligned} A - A^{\prime } & = \mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {\sum\limits_{g = 0}^{s} {\sum\limits_{h = 0}^{t} {\sum\limits_{\tau = 0}^{g - 1} {\sum\limits_{\rho = 0}^{h + 1} {gc_{s,g} c_{t,h} d_{g - 1,\tau } d_{h + 1,\rho } L_{\tau \rho } A(p - 1,q + 1,i,j,s,t)} } } } } } \\ \, & - \mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {L_{st} \sum\limits_{\tau = s + 1}^{p - i} {\sum\limits_{\rho = t - 1}^{q - j} {\sum\limits_{g = s + 1}^{\tau } {\sum\limits_{h = t - 1}^{\rho } {gc_{\tau ,g} c_{\rho ,h} d_{g - 1,s} d_{h + 1,t} A(p,q,i,j,\tau ,\rho )} } } } } } \\ \, & = \mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0 < i + j < p + q} \left[ {\sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {\sum\limits_{g = 0}^{s} {\sum\limits_{h = 0}^{t} {\sum\limits_{\tau = 0}^{g - 1} {\sum\limits_{\rho = 0}^{h + 1} {gc_{s,g} c_{t,h} d_{g - 1,\tau } d_{h + 1,\rho } L_{\tau \rho } A(p - 1,q + 1,i,j,s,t)} } } } } } } \right. \\ & \left. { - \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {L_{st} \sum\limits_{\tau = s + 1}^{p - i} {\sum\limits_{\rho = t - 1}^{q - j} {\sum\limits_{g = s + 1}^{\tau } {\sum\limits_{h = t - 1}^{\rho } {gc_{\tau ,g} c_{\rho ,h} d_{g - 1,s} d_{h + 1,t} A(p,q,i,j,\tau ,\rho )} } } } } } } \right] \\ & = \mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0 < i + j < p + q} [D_{1} - D_{2} ] \\ \end{aligned} $$
(42)

where

$$ D_{1} = \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {\sum\limits_{g = 0}^{s} {\sum\limits_{h = 0}^{t} {\sum\limits_{\tau = 0}^{g - 1} {\sum\limits_{\rho = 0}^{h + 1} {gc_{s,g} c_{t,h} d_{g - 1,\tau } d_{h + 1,\rho } L_{\tau \rho } A(p - 1,q + 1,i,j,s,t)} } } } } } $$
(43)
$$ D_{2} = \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {L_{st} \sum\limits_{\tau = s + 1}^{p - i} {\sum\limits_{\rho = t - 1}^{q - j} {\sum\limits_{g = s + 1}^{\tau } {\sum\limits_{h = t - 1}^{\rho } {gc_{\tau ,g} c_{\rho ,h} d_{g - 1,s} d_{h + 1,t} A(p,q,i,j,\tau ,\rho )} } } } } } $$
(44)

By changing the order of summation and shifting the indices in D 1, we obtain

$$ D_{1} = \sum\limits_{\tau = 0}^{p - i - 2} {\sum\limits_{\rho = 0}^{q - j + 2} {L_{\tau \rho } \sum\limits_{s = \tau + 1}^{p - i - 1} {\sum\limits_{t = \rho - 1}^{q - j + 1} {\sum\limits_{g = \tau + 1}^{s} {\sum\limits_{h = \rho - 1}^{t} {gc_{s,g} c_{t,h} d_{g - 1,\tau } d_{h + 1,\rho } A(p - 1,q + 1,i,j,s,t)} } } } } } $$
(45)

Let p = p-1 and q = q + 1, (45) can be rewritten as

$$ D_{1} = \sum\limits_{\tau = 0}^{p - i - 1} {\sum\limits_{\rho = 0}^{q - j + 1} {L_{\tau \rho } \sum\limits_{s = \tau + 1}^{p - i} {\sum\limits_{t = \rho - 1}^{q - j} {\sum\limits_{g = \tau + 1}^{s} {\sum\limits_{h = \rho - 1}^{t} {gc_{s,g} c_{t,h} d_{g - 1,\tau } d_{h + 1,\rho } A(p,q,i,j,s,t)} } } } } } $$
(46)

Let s = τ, t = ρ and τ = s, ρ = t in (46), we have

$$ D_{1} = \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {L_{st} \sum\limits_{\tau = s + 1}^{p - i} {\sum\limits_{\rho = t - 1}^{q - j} {\sum\limits_{g = s + 1}^{\tau } {\sum\limits_{h = t - 1}^{\rho } {gc_{\tau ,g} c_{\rho ,h} d_{g - 1,s} d_{h + 1,t} A(p,q,i,j,\tau ,\rho )} } } } } } $$
(47)

Obviously, from (47) and (44), we can see that D 1 is equal to D 2, which means A′ in (41) can be deduced from A in (40).

Thus, changing the order of summation and shifting the indices in (39), we obtain

$$ \begin{aligned} \frac{{\partial \hat{I}_{pq} }}{\partial \beta } - \frac{{\partial I_{pq} }}{\partial \beta } &= \frac{1}{{2L_{00} }}\mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0 <i + j< p + q} \sum\limits_{s = 0}^{p - i - 1} \sum\limits_{t = 0}^{q - j + 1} L_{st} \\& \quad \times\left[ {\sum\limits_{\tau = s + 1}^{p - i} {\sum\limits_{\rho = t - 1}^{q - j} {\sum\limits_{g = s + 1}^{\tau } {\sum\limits_{h = t - 1}^{\rho } {gc_{\tau ,g} c_{\rho ,h} d_{g - 1,s} d_{h + 1,t} } } } } } \right. \\ & \quad \cdot A(p,q,i,j,\tau ,\rho ) + \sum\limits_{w = i + 1}^{p - s} {\sum\limits_{b = j - 1}^{q - t} {\sum\limits_{\lambda = i + 1}^{w} {\sum\limits_{\sigma = j - 1}^{b} {\lambda c_{w,\lambda } c_{b,\sigma } d_{\lambda - 1,i} d_{\sigma + 1,j} } } } } \cdot A(p,q,w,b,s,t) \\ & \quad \left. { - \sum\limits_{m = s + i + 1}^{p} {\sum\limits_{n = t + j - 1}^{q} {\sum\limits_{e = s + i}^{m - 1} {\sum\limits_{r = t + j}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,e} d_{n + 1,r} A(e,r,i,j,s,t)} } } } } \right] \\ &\quad = \frac{1}{{2L_{00} }}\mathop {\sum\limits_{i = 0}^{p - 1} {\sum\limits_{j = 0}^{q + 1} {I_{ij} } } }\limits_{0< i + j <p + q} \sum\limits_{s = 0}^{p - i - 1} {\sum\limits_{t = 0}^{q - j + 1} {L_{st} [W_{1} + W_{2} - W_{3} ]} } \\ \end{aligned} $$
(48)

where

$$ W_{1} = \sum\limits_{\tau = s + 1}^{p - i} {\sum\limits_{\rho = t - 1}^{q - j} {\sum\limits_{g = s + 1}^{\tau } {\sum\limits_{h = t - 1}^{\rho } {gc_{\tau ,g} c_{\rho ,h} d_{g - 1,s} d_{h + 1,t} A\left( {p,q,i,j,\tau ,\rho } \right)} } } } $$
(49)
$$ W_{2} = \sum\limits_{w = i + 1}^{p - s} {\sum\limits_{b = j - 1}^{q - t} {\sum\limits_{\lambda = i + 1}^{w} {\sum\limits_{\sigma = j - 1}^{b} {\lambda c_{w,\lambda } c_{b,\sigma } d_{\lambda - 1,i} d_{\sigma + 1,j} } } } } \cdot A(p,q,w,b,s,t) $$
(50)
$$ W_{3} = \sum\limits_{m = s + i + 1}^{p} {\sum\limits_{n = t + j - 1}^{q} {\sum\limits_{e = s + i}^{m - 1} {\sum\limits_{r = t + j}^{n + 1} {mc_{p,m} c_{q,n} d_{m - 1,e} d_{n + 1,r} A(e,r,i,j,s,t)} } } } $$
(51)

By changing the order of the summation in (49) and using the orthogonal property in (7), W 1 can be rewritten as

$$ \begin{aligned} W_{1} & = \sum\limits_{g = s + 1}^{p - i} {\sum\limits_{h = t - 1}^{q - j} {\sum\limits_{l = j}^{q - h} {\sum\limits_{n = l + h}^{q} {\sum\limits_{k = i}^{p - g} {\sum\limits_{m = k + g}^{p} {gd_{g - 1,s} d_{h + 1,t} \left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ l \hfill \\ \end{gathered} \right)c_{p,m} c_{q,n} d_{k,i} d_{l,j} \sum\limits_{\tau = g}^{m - k} {d_{m - k,\tau } c_{\tau ,g} \sum\limits_{\rho = h}^{n - l} {d_{n - l,\rho } c_{\rho ,h} } } } } } } } } \\ & = \sum\limits_{g = s + 1}^{p - i} {\sum\limits_{h = t - 1}^{q - j} {\sum\limits_{l = j}^{q - h} {\sum\limits_{n = l + h}^{q} {\sum\limits_{k = i}^{p - g} {\sum\limits_{m = k + g}^{p} {gd_{g - 1,s} d_{h + 1,t} \left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ l \hfill \\ \end{gathered} \right)c_{p,m} c_{q,n} d_{k,i} d_{l,j} \delta_{m - k,g} \delta_{n - l,h} } } } } } } \\ & = \sum\limits_{g = s + 1}^{p - i} {\sum\limits_{h = t - 1}^{q - j} {\sum\limits_{k = i}^{p - g} {\sum\limits_{l = j}^{q - h} {gd_{g - 1,s} d_{h + 1,t} \left( \begin{gathered} k + g \\ k \\ \end{gathered} \right)\left( \begin{gathered} h + l \\ l \\ \end{gathered} \right)c_{p,k + g} c_{q,h + l} d_{k,i} d_{l,j} } } } } \\ \end{aligned} $$
(52)

Let k + g = m, l + h = n and change the order of summation again, we have

$$ \begin{aligned} W_{1} & = \sum\limits_{g = s + 1}^{p - i} \sum\limits_{h = t - 1}^{q - j} \sum\limits_{m = g + i}^{p} \sum\limits_{n = h + j}^{q} gd_{g - 1,s} d_{h + 1,t} \left( \begin{gathered} m \\ m - g \\ \end{gathered} \right)\left( \begin{gathered} n \\ n - h \\ \end{gathered} \right)\\& \quad \times c_{p,m} c_{q,n} d_{m - g,i} d_{n - h,j} \\ & = \sum\limits_{m = s + i + 1}^{p} \sum\limits_{n = t + j - 1}^{q} \sum\limits_{g = s + 1}^{m - i} \sum\limits_{h = t - 1}^{n - j} gd_{g - 1,s} d_{h + 1,t} \left( \begin{gathered} m \\ m - g \\ \end{gathered} \right)\\& \quad \times \left( \begin{gathered} n \\ n - h \\ \end{gathered} \right)c_{p,m} c_{q,n} d_{m - g,i} d_{n - h,j} \\ & = \sum\limits_{g = s + i + 1}^{p} \sum\limits_{h = t + j - 1}^{q} \sum\limits_{m = s + 1}^{g - i} \sum\limits_{n = t - 1}^{h - j} md_{m - 1,s} d_{n + 1,t} \left( \begin{gathered} g \\ g - m \\ \end{gathered} \right)\\&\quad \times \left( \begin{gathered} h \\ h - n \\ \end{gathered} \right)c_{p,g} c_{q,h} d_{g - m,i} d_{h - n,j} \\ \end{aligned} $$
(53)

In a similar way, we will obtain

$$ W_{2} = \sum\limits_{g = i + s + 1}^{p} {\sum\limits_{h = j + t - 1}^{q} {\sum\limits_{m = i + 1}^{g - s} {\sum\limits_{n = j - 1}^{h - t} {md_{m - 1,i} d_{n + 1,j} \left( \begin{gathered} g \hfill \\ m \hfill \\ \end{gathered} \right)\left( \begin{gathered} h \hfill \\ n \hfill \\ \end{gathered} \right)c_{p,g} c_{q,h} d_{g - m,s} d_{h - n,t} } } } } $$
(54)
$$ W_{3} = \sum\limits_{g = i + s + 1}^{p} {\sum\limits_{h = j + t - 1}^{q} {\sum\limits_{m = i + 1}^{g - s} {\sum\limits_{n = j - 1}^{h - t} {gc_{p,g} c_{q,h} \left( \begin{gathered} g - 1 \hfill \\ m - 1 \hfill \\ \end{gathered} \right)\left( \begin{gathered} h + 1 \hfill \\ n + 1 \hfill \\ \end{gathered} \right)d_{m - 1,i} d_{g - m,s} d_{n + 1,j} d_{h - n,t} } } } } $$
(55)

Let m′ = gm + 1, n′ = hn – 1

$$ \begin{aligned} W_{3} - W_{2} & = \sum\limits_{g = s + i + 1}^{p} \sum\limits_{h = t + j - 1}^{q} c_{p,g} c_{q,h} \sum\limits_{m = i + 1}^{g - s} \sum\limits_{n = j - 1}^{h - t} \left[ g\left( \begin{gathered} g - 1 \\ m - 1 \\ \end{gathered} \right)\right.\\&\quad \times \left. \left( \begin{gathered} h + 1 \\ n + 1 \\ \end{gathered} \right) - m\left( \begin{gathered} g \\ m \\ \end{gathered} \right)\left( \begin{gathered} h \\ n \\ \end{gathered} \right) \right] \cdot d_{m - 1,i} d_{g - m,s} d_{n + 1,j} \\ & \quad \times d_{h - n,t} \\ & = \sum\limits_{g = s + i + 1}^{p} \sum\limits_{h = t + j - 1}^{q} c_{p,g} c_{q,h} \sum\limits_{m = i + 1}^{g - s} \sum\limits_{n = j - 1}^{h - t} m\left( \begin{gathered} g \\ m \\ \end{gathered} \right)\\&\quad\times\left( \begin{gathered} h \\ n + 1 \\ \end{gathered} \right)d_{m - 1,i} d_{g - m,s} d_{n + 1,j} d_{h - n,t} \\ & = \sum\limits_{g = s + i + 1}^{p} \sum\limits_{h = t + j - 1}^{q} c_{p,g} c_{q,h} \sum\limits_{{m^{\prime} = s + 1}}^{g - i} \sum\limits_{{n^{\prime} = t - 1}}^{h - j} (g - m^{\prime } + 1) \\ & \quad \times \left( \begin{gathered} g \\ g - m^{\prime } + 1 \\ \end{gathered} \right)\left( \begin{gathered} h \\ h - n^{\prime } \\ \end{gathered} \right) \cdot d_{{g - m^{\prime},i}} d_{{m^{\prime} - 1,s}} d_{{h - n^{\prime},j}} d_{{n^{\prime} + 1,t}} \\ & = \sum\limits_{g = s + i + 1}^{p} \sum\limits_{h = t + j - 1}^{q} c_{p,g} c_{q,h} \sum\limits_{m = s + 1}^{g - i} \sum\limits_{n = t - 1}^{h - j} (g - m + 1)\\&\quad \times \left( \begin{gathered} g \\ g - m + 1 \\ \end{gathered} \right)\left( \begin{gathered} h \\ h - n \\ \end{gathered} \right) \cdot d_{g - m,i} d_{m - 1,s} d_{h - n,j} d_{n + 1,t} \\ & = \sum\limits_{g = s + i + 1}^{p} \sum\limits_{h = t + j - 1}^{q} c_{p,g} c_{q,h} \sum\limits_{m = s + 1}^{g - i} \sum\limits_{n = t - 1}^{h - j} m\left( \begin{gathered} g \\ m \\ \end{gathered} \right)\left( \begin{gathered} h \\ n \\ \end{gathered} \right)\\&\quad\times d_{g - m,i} d_{m - 1,s} d_{h - n,j} d_{n + 1,t} \\ \end{aligned} $$
(56)

Then we can obtain W 3W 2W 1 = 0, which means \( \frac{{\partial I_{pq} }}{\partial \beta } - \frac{{\partial \hat{I}_{pq} }}{\partial \beta } = 0 \). Now the proof for X-shearing is completed.

1.2 B. Y-shearing

Because of symmetry, the proof for Y-shearing can be derived using the method similar to X-shearing.

1.3 C. Anisotropy scaling normalization

As we can see from (15), anisotropy scaling can be subdivided into two more simple steps

1. u = αx, v = y

2. u = x, v = δy

Obviously, validating (27) for each of these two steps is sufficient to the proof of the anisotropy scaling.

For step 1, we have

$$ \frac{{\partial L_{pq} }}{\partial \alpha } = \frac{\partial }{\partial \alpha }\int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {P_{p} (u)P_{q} (v)\ddot{f}(u,v){\text{d}}u{\text{d}}v} } = \frac{\partial }{\partial \alpha }\int\limits_{ - 1}^{1} {\int\limits_{ - 1}^{1} {P_{p} (\alpha x)P_{q} (y)f(x,y)\alpha {\text{d}}x{\text{d}}y} } $$
(57)

Using the similar deduction in (29) and (30), we can obtain

$$ \frac{{\partial L_{pq} }}{\partial \alpha } = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{i = 0}^{m} {\sum\limits_{j = 0}^{n} {\frac{(m + 1)}{\alpha }c_{p,m} c_{q,n} d_{m,i} d_{n,j} L_{ij} } } } } $$
(58)

Now, we need to prove that:

$$ \frac{{\partial I_{pq} }}{\partial \alpha } = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{i = 0}^{m} {\sum\limits_{j = 0}^{n} {\frac{(m + 1)}{\alpha }c_{p,m} c_{q,n} d_{m,i} d_{n,j} I_{ij} } } } } $$
(59)

Since I pq is equal to L pq , it can be easily verified that (59) is true for p + q = 1. For p + q = 3, we just consider p = 2, q = 1 in which

$$ \begin{aligned} \frac{{\partial I_{21} }}{\partial \alpha } & = \frac{{\partial L_{21} }}{\partial \alpha } - \mathop {\sum\limits_{i = 0}^{2} {\sum\limits_{j = 0}^{1} {} } }\limits_{0 < i + j < 3} \sum\limits_{s = 0}^{2 - i} {\sum\limits_{t = 0}^{1 - j} {\left[ {\frac{{\partial \left( {\frac{{L_{s,t} }}{{2L_{00} }}} \right)}}{\partial \alpha }I_{ij} + \frac{{L_{s,t} }}{{2L_{00} }}\frac{{\partial I_{ij} }}{\partial \alpha }} \right] \cdot } A(2,1,i,j,s,t)} \\ & = \sum\limits_{m = 0}^{2} {\sum\limits_{n = 0}^{1} {\sum\limits_{i = 0}^{m} {\sum\limits_{j = 0}^{n} {\frac{(m + 1)}{\alpha }c_{2,m} c_{1,n} d_{m,i} d_{n,j} I_{ij} } } } } \\ & - \mathop {\sum\limits_{i = 0}^{2} {\sum\limits_{j = 0}^{1} {} } }\limits_{0 < i + j < 3} \sum\limits_{s = 0}^{2 - i} {\sum\limits_{t = 0}^{1 - j} {\left[ {\frac{{\partial \left( {\frac{{L_{s,t} }}{{2L_{00} }}} \right)}}{\partial \alpha }I_{ij} + \frac{{L_{s,t} }}{{2L_{00} }}\frac{{\partial I_{ij} }}{\partial \alpha }} \right] \cdot } A(2,1,i,j,s,t)} \\ \end{aligned} $$
(60)

It is sufficient to prove

$$ \frac{{\partial I_{21} }}{\partial \alpha } - \sum\limits_{m = 0}^{2} {\sum\limits_{n = 0}^{1} {\sum\limits_{i = 0}^{m} {\sum\limits_{j = 0}^{n} {\frac{(m + 1)}{\alpha }c_{2,m} c_{1,n} d_{m,i} d_{n,j} I_{ij} } } } } = 0 $$
(61)

Based on Theorem 1 and (58), we have

$$ \begin{aligned} \frac{{\partial L_{00} }}{\partial \alpha } & = \frac{1}{\alpha }c_{00} c_{00} d_{00} d_{00} L_{00} \\ \frac{{\partial L_{10} }}{\partial \alpha } & = \frac{1}{\alpha }c_{10} c_{00} d_{00} d_{00} L_{00} + \frac{2}{\alpha }c_{11} c_{00} d_{10} d_{00} L_{00} + \frac{2}{\alpha }c_{11} c_{00} d_{11} d_{00} L_{10} \\ \frac{{\partial L_{01} }}{\partial \alpha } & = \frac{1}{\alpha }c_{00} c_{10} d_{00} d_{00} L_{00} + \frac{1}{\alpha }c_{00} c_{11} d_{00} d_{10} L_{00} + \frac{1}{\alpha }c_{00} c_{11} d_{11} d_{00} L_{01} \\ L_{00} & = I_{00} \quad L_{01} = I_{01} \quad L_{10} = I_{10} \\ I_{21} & = L_{21} - \frac{1}{{2L_{00} }}\{ I_{01} [L_{00} A(2,1,0,1,0,0) + L_{10} A(2,1,0,1,1,0) + L_{20} A(2,1,0,1,2,0)] \\ & + I_{10} [L_{00} A(2,1,1,0,0,0) + L_{01} A(2,1,1,0,0,1) + L_{10} A(2,1,1,0,1,0) + L_{11} A(2,1,1,0,1,1)\} \\ \end{aligned} $$
(62)

Substituting (60) and (62) into (61), we can conduct that (59) is true for p = 2, q = 1.

Assume that (31) holds for all invariants of order less than p + q, next we will consider the case of p + q.

Based on the definition of blur invariants, we have

$$ \begin{aligned} \frac{{\partial I_{pq} }}{\partial \alpha } & = \frac{{\partial L_{p,q} }}{\partial \alpha } - \mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\left[ {\frac{{\partial \left( {\frac{{L_{s,t} }}{{2L_{00} }}} \right)}}{\partial \alpha }I_{ij} + \frac{{L_{s,t} }}{{2L_{00} }}\frac{{\partial I_{ij} }}{\partial \alpha }} \right] \cdot } A(p,q,i,j,s,t)} \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{e = 0}^{m} {\sum\limits_{r = 0}^{n} {\frac{(m + 1)}{\alpha }c_{p,m} c_{q,n} d_{m,e} d_{n,r} L_{er} } } } } - \mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\left[ {\frac{{\frac{{\partial L_{s,t} }}{\partial \alpha }L_{00} - \frac{{\partial L_{0,0} }}{\partial \alpha }L_{s,t} }}{{2L_{00}^{2} }}I_{ij} } \right.} } \\ & + \frac{{L_{s,t} }}{{2L_{00} }}\sum\limits_{\lambda = 0}^{i} {\sum\limits_{\sigma = 0}^{j} {\sum\limits_{w = 0}^{\lambda } {\sum\limits_{b = 0}^{\sigma } {\left. {\frac{(\lambda + 1)}{\alpha }c_{i,\lambda } c_{j,\sigma } d_{\lambda ,w} d_{\sigma ,b} I_{wb} } \right] \cdot } } } } A(p,q,i,j,s,t) \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{e = 0}^{m} {\sum\limits_{r = 0}^{n} {\frac{(m + 1)}{\alpha }c_{p,m} c_{q,n} d_{m,e} d_{n,r} L_{er} } } } } \\ & - \mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\left[ {\sum\limits_{g = 0}^{s} {\sum\limits_{h = 0}^{t} {\sum\limits_{\tau = 0}^{g} {\sum\limits_{\rho = 0}^{h} {\frac{{(g + 1)c_{s,g} c_{t,h} d_{g,\tau } d_{h,\rho } L_{\tau \rho } }}{{2\alpha L_{00} }}I_{ij} } } } } - \frac{{L_{s,t} }}{{2\alpha L_{00} }}I_{ij} } \right.} } \\ & + \frac{{L_{s,t} }}{{2L_{00} }}\sum\limits_{\lambda = 0}^{i} {\sum\limits_{\sigma = 0}^{j} {\sum\limits_{w = 0}^{\lambda } {\sum\limits_{b = 0}^{\sigma } {\left. {\frac{(\lambda + 1)}{\alpha }c_{i,\lambda } c_{j,\sigma } d_{\lambda ,w} d_{\sigma ,b} I_{wb} } \right] \cdot } } } } A(p,q,i,j,s,t) \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{q} {\sum\limits_{e = 0}^{m} {\sum\limits_{r = 0}^{n} {\frac{(m + 1)}{\alpha }c_{p,m} c_{q,n} d_{m,e} d_{n,r} L_{er} } } } } \\ & \mathop { - \sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \frac{{I_{ij} }}{{2\alpha L_{00} }}\left[ {\sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {L_{st} \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{g = s}^{\tau } {\sum\limits_{h = t}^{\rho } {(g + 1)c_{\tau ,g} c_{\rho ,h} d_{g,s} d_{h,t} } } } } \cdot A(p,q,i,j,\tau ,\rho )} } } \right. \\ & - \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {L_{st} \cdot A(p,q,i,j,s,t)} } \\ & \left. { + \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\sum\limits_{w = i}^{p - s} {\sum\limits_{b = j}^{q - t} {\sum\limits_{\lambda = i}^{w} {\sum\limits_{\sigma = j}^{b} {(\lambda + 1)c_{w,\lambda } c_{b,\sigma } d_{\lambda ,i} d_{\sigma ,j} L_{st} \cdot } } } } A(p,q,w,b,s,t)} } } \right] \\ \end{aligned} $$
(63)

Let

$$ \begin{aligned} \frac{{\partial \hat{I}_{pq} }}{\partial \alpha } & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{p} {\sum\limits_{e = 0}^{m} {\sum\limits_{r = 0}^{n} {\frac{(m + 1)}{\alpha }c_{pm} c_{qn} d_{me} d_{nr} I_{er} } } } } \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{p} {\sum\limits_{e = 0}^{m} {\sum\limits_{r = 0}^{n} {\frac{(m + 1)}{\alpha }c_{pm} c_{qn} d_{me} d_{nr} } } } } \\&\quad\times \left[ {L_{er} - \frac{1}{{2L_{00} }}\mathop{\sum\limits_{i = 0}^{e} {\sum\limits_{j = 0}^{r} {} } }\limits_{0 < i + j < e + q} rI_{ij} \sum\limits_{s = 0}^{e - i} {\sum\limits_{t = 0}^{r - j} {L_{s,t} } } } { \cdot A(e,r,i,j,s,t)} \right] \\ & = \sum\limits_{m = 0}^{p} {\sum\limits_{n = 0}^{p} {\sum\limits_{e = 0}^{m} {\sum\limits_{r = 0}^{n} {\frac{(m + 1)}{\alpha }c_{pm} c_{qn} d_{me} d_{nr} L_{er} } } } } \\ & \quad - \frac{1}{{2\alpha L_{00} }}\mathop{\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} I_{ij} \sum\limits_{s = 0}^{p - i} \sum\limits_{t = 0}^{q - j} L_{st} \sum\limits_{m = s + i}^{p} \sum\limits_{n = t + j}^{q} \sum\limits_{e = s + i}^{m} \sum\limits_{r = t + j}^{n}\\&\quad\times {(m + 1)c_{pm} c_{qn} d_{me} d_{nr} L_{st} } \cdot A(e,r,i,j,s,t) \\ \end{aligned} $$
(64)

If we can prove\( \frac{{\partial I_{pq} }}{\partial \alpha } - \frac{{\partial \hat{I}_{pq} }}{\partial \alpha } = 0 \), then (59) can be proved. Thus

$$ \begin{aligned} \frac{{\partial I_{pq} }}{\partial \alpha } - \frac{{\partial \hat{I}_{pq} }}{\partial \alpha } & = \frac{1}{{2\alpha L_{00} }}\mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} I_{ij} \sum\limits_{s = 0}^{p - i} \sum\limits_{t = 0}^{q - j} L_{st} \\&\quad\times\sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {\sum\limits_{e = s + i}^{m} {\sum\limits_{r = t + j}^{n} {(m + 1)c_{p,m} c_{q,n} d_{m,e} d_{n,r} } } } } \\ & \quad\mathop{ \cdot A(e,r,i,j,s,t) - \sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \frac{{I_{ij} }}{{2\alpha L_{00} }}\left[ {\sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {L_{st} \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{g = s}^{\tau } {\sum\limits_{h = t}^{\rho } {(g + 1)c_{\tau ,g} c_{\rho ,h} } } } } } } } \right. \cdot d_{g,s} d_{h,t} \\&\quad\times A(p,q,i,j,\tau ,\rho ) - \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {L_{st} \cdot A(p,q,i,j,s,t)} } \\ & \left. {\quad + \sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {\sum\limits_{w = i}^{p - s} {\sum\limits_{b = j}^{q - t} {\sum\limits_{\lambda = i}^{w} {\sum\limits_{\sigma = j}^{b} {(\lambda + 1)c_{w,\lambda } c_{b,\sigma } d_{\lambda ,i} d_{\sigma ,j} L_{st} \cdot } } } } A(p,q,w,b,s,t)} } } \right] \\ & = \mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \frac{{I_{ij} }}{{2\alpha L_{00} }}\sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {L_{st} \left[ {\sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {\sum\limits_{e = s + i}^{m} {\sum\limits_{r = t + j}^{n} {(m + 1)c_{pm} c_{qn} d_{me} d_{yr} } } } } } \right.} } \\ & \cdot A(e,r,i,j,s,t) - \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{g = s}^{\tau } {\sum\limits_{h = t}^{\rho } {(g + 1)c_{\tau g} c_{\rho h} d_{gs} d_{ht} } } } } \cdot A(p,q,i,j,\tau ,\rho ) - \\ & \left. {A(p,q,i,j,s,t) - \sum\limits_{w = i}^{p - s} {\sum\limits_{b = j}^{q - t} {\sum\limits_{\lambda = i}^{w} {\sum\limits_{\sigma = j}^{b} {(\lambda + 1)c_{w\lambda } c_{b\sigma } d_{\lambda i} d_{\sigma j} \cdot } } } } A(p,q,w,b,s,t)} \right] \\ & = \mathop {\sum\limits_{i = 0}^{p} {\sum\limits_{j = 0}^{q} {} } }\limits_{0 < i + j < p + q} \frac{{I_{ij} }}{{2\alpha L_{00} }}\sum\limits_{s = 0}^{p - i} {\sum\limits_{t = 0}^{q - j} {L_{st} [T_{1} - T_{2} - T_{3} ]} } \\ \end{aligned} $$
(65)

where

$$ \begin{aligned} T_{1} & = \sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {\sum\limits_{e = s + i}^{m} {\sum\limits_{r = t + j}^{n} {(m + 1)c_{pm} c_{qn} d_{me} d_{yr} } } } } \cdot A(e,r,i,j,s,t) \\ T_{2} & = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{g = s}^{\tau } {\sum\limits_{h = t}^{\rho } {(g + 1)c_{\tau g} c_{\rho h} d_{gs} d_{ht} } } } } \cdot A(p,q,i,j,\tau ,\rho ) - A(p,q,i,j,s,t) \\ T_{3} & = \sum\limits_{w = i}^{p - s} {\sum\limits_{b = j}^{q - t} {\sum\limits_{\lambda = i}^{w} {\sum\limits_{\sigma = j}^{b} {(\lambda + 1)c_{w\lambda } c_{b\sigma } d_{\lambda i} d_{\sigma j} \cdot } } } } A(p,q,w,b,s,t) \\ \end{aligned} $$

After changing the variables, we have

$$ \begin{aligned} T_{2} & = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{g = \tau }^{p - i} {\sum\limits_{h = \rho }^{q - j} {(\tau + 1)c_{g\tau } c_{h\rho } d_{\tau s} d_{\rho t} } } } } \cdot A(p,q,i,j,g,h) - A(p,q,i,j,s,t) \\ & = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{g = \tau }^{p - i} {\sum\limits_{h = \rho }^{q - j} {(\tau + 1)c_{g\tau } c_{h\rho } d_{\tau s} d_{\rho t} } } } } \cdot \sum\limits_{k = i}^{p - g} {\sum\limits_{m = k + g}^{p} {\sum\limits_{l = j}^{q - h} {\sum\limits_{n = l + h}^{q} {\left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ l \hfill \\ \end{gathered} \right)c_{pm} c_{qn} d_{ki} } } } } d_{m - k,g} d_{lj} d_{n - l,h} \\ & \quad - A(p,q,i,j,s,t) \\ \end{aligned} $$
(66)

By changing the order of the summation in (66) and using the orthogonal property in (7), T 2 can be rewritten as

$$ \begin{gathered} T_{2} = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{k = i}^{p - \tau } {\sum\limits_{l = j}^{q - \rho } {(\tau + 1)d_{\tau s} d_{\rho t} } } } } \left( \begin{gathered} k + \tau \\ k \\ \end{gathered} \right)\left( \begin{gathered} \rho + l \\ l \\ \end{gathered} \right)c_{p,k + \tau } c_{q,\rho + l} d_{ki} d_{lj} \\ - \sum\limits_{k = i}^{p - s} {\sum\limits_{l = j}^{q - t} {\sum\limits_{m = k + s}^{p} {\sum\limits_{n = l + t}^{q} {\left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ l \hfill \\ \end{gathered} \right)c_{pm} c_{qn} d_{ki} } } } } d_{m - k,s} d_{lj} d_{n - l,t} \\ = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{k = i}^{p - \tau } {\sum\limits_{l = j}^{q - \rho } {(\tau + 1)d_{\tau s} d_{\rho t} } } } } \left( \begin{gathered} k + \tau \\ k \\ \end{gathered} \right)\left( \begin{gathered} \rho + l \\ l \\ \end{gathered} \right)c_{p,k + \tau } c_{q,\rho + l} d_{ki} d_{lj} \\ - \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{m = \tau + i}^{p} {\sum\limits_{n = \rho + j}^{q} {\left( \begin{gathered} m \hfill \\ \tau \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ \rho \hfill \\ \end{gathered} \right)c_{pm} c_{qn} d_{\tau s} } } } } d_{m - \tau ,i} d_{\rho t} d_{n - \rho ,j} \\ \end{gathered} $$
(67)

Let m = k+τ and n = l+ρ

$$ \begin{aligned} T_{2} & = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{k = i}^{p - \tau } {\sum\limits_{l = j}^{q - \rho } {(\tau + 1)d_{\tau s} d_{\rho t} } } } } \left( \begin{gathered} k + \tau \\ k \\ \end{gathered} \right)\left( \begin{gathered} \rho + l \\ l \\ \end{gathered} \right)c_{p,k + \tau } c_{q,\rho + l} d_{ki} d_{lj} \\ & \quad - \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{k = i}^{p - \tau } {\sum\limits_{l = j}^{q - \rho } {\left( \begin{gathered} k + \tau \\ \tau \\ \end{gathered} \right)\left( \begin{gathered} l + \rho \\ \rho \\ \end{gathered} \right)c_{p,k + \tau } c_{q,l + \rho } d_{\tau s} } } } } d_{ki} d_{\rho t} d_{lj} \\ & = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{k = i}^{p - \tau } {\sum\limits_{l = j}^{q - \rho } {\tau d_{\tau s} d_{\rho t} } } } } \left( \begin{gathered} k + \tau \\ k \\ \end{gathered} \right)\left( \begin{gathered} \rho + l \\ l \\ \end{gathered} \right)c_{p,k + \tau } c_{q,\rho + l} d_{ki} d_{lj} \\ & = \sum\limits_{\tau = s}^{p - i} {\sum\limits_{\rho = t}^{q - j} {\sum\limits_{m = i + \tau }^{p} {\sum\limits_{n = j + \rho }^{q} \tau } } } \left( \begin{gathered} m \\ \tau \\ \end{gathered} \right)\left( \begin{gathered} n \\ n - \rho \\ \end{gathered} \right)c_{p,m} c_{q,n} d_{\tau s} d_{\rho t} d_{m - \tau ,i} d_{n - \rho ,j} \\ & = \sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {\sum\limits_{\tau = s}^{m - i} {\sum\limits_{\rho = t}^{n - j} \tau } } } \left( \begin{gathered} m \\ \tau \\ \end{gathered} \right)\left( \begin{gathered} n \\ n - \rho \\ \end{gathered} \right)c_{p,m} c_{q,n} d_{\tau s} d_{\rho t} d_{m - \tau ,i} d_{n - \rho ,j} \\ & = \sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {\sum\limits_{k = s}^{m - i} {\sum\limits_{l = t}^{n - j} k } } } \left( \begin{gathered} m \\ k \\ \end{gathered} \right)\left( \begin{gathered} n \\ n - l \\ \end{gathered} \right)c_{p,m} c_{q,n} d_{m - k,s} d_{n - l,t} d_{k,i} d_{l,j} \\ \end{aligned} $$
(68)

Similarly

$$ T3 = \sum\limits_{m = i + s}^{p} {\sum\limits_{n = t + j}^{q} {\sum\limits_{k = i}^{m - s} {\sum\limits_{l = j}^{n - t} {(k + 1)} } } } \left( \begin{gathered} m \\ k \\ \end{gathered} \right)\left( \begin{gathered} n \\ l \\ \end{gathered} \right)c_{p,m} c_{q,n} d_{m - k,s} d_{n - l,t} d_{ki} d_{lj} $$
(69)
$$ T1 = \sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {\sum\limits_{k = i}^{m - s} {\sum\limits_{l = j}^{n - t} {(m + 1)\left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ l \hfill \\ \end{gathered} \right)c_{pm} c_{qn} d_{m - k,s} d_{n - l,t} d_{ki} d_{lj} } } } } $$
(70)

Therefore

$$ \begin{aligned} T1 - T2 - T3 & = \sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {c_{pm} c_{qn} } } \left[ {\sum\limits_{k = i}^{m - s} {\sum\limits_{l = j}^{n - t} {(m - k)\left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ l \hfill \\ \end{gathered} \right)d_{m - k,s} d_{n - l,t} d_{ki} d_{lj} } } } \right. \\ & \left. {\quad - \sum\limits_{k = s}^{m - i} {\sum\limits_{l = t}^{n - j} {k\left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \\ n - l \\ \end{gathered} \right)d_{m - k,s} d_{n - l,t} d_{ki} d_{lj} } } } \right] \\ \end{aligned} $$
(71)

Let x-k = k′, y-l = l

$$ \begin{aligned} T1 - T2 - T3 & = \sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {c_{pm} c_{qn} } } \left[ \sum\limits_{{k^{\prime } = s}}^{m - i} \sum\limits_{{l^{\prime } = t}}^{n - j} k^{\prime } \left( \begin{gathered} m \\ m - k^{\prime } \\ \end{gathered} \right) \right. \\&\quad\times \left( \begin{gathered} n \\ n - l^{\prime } \\ \end{gathered} \right)d_{{k^{\prime } ,s}} d_{{l^{\prime } ,t}} d_{{m - k^{\prime } ,i}} d_{{n - l^{\prime } ,j}} \\ &\quad \left.{- \sum\limits_{k = s}^{m - i} {\sum\limits_{l = t}^{n - j} {k\left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \\ n - l \\ \end{gathered} \right)d_{m - k,s} d_{n - l,t} d_{ki} d_{lj} } } } \right] \\ & = \sum\limits_{m = s + i}^{p} {\sum\limits_{n = t + j}^{q} {c_{pm} c_{qn} } } \sum\limits_{k = s}^{m - i} \sum\limits_{l = t}^{n - j} k\left( \begin{gathered} m \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} n \hfill \\ l \hfill \\ \end{gathered} \right)\\&\quad\times \left[ {d_{k,s} d_{l,t} d_{m - k,i} d_{n - l,j} - d_{m - k,s} d_{n - l,t} d_{ki} d_{lj} } \right] = 0 \\ \end{aligned} $$
(72)

Then we can obtain \( \frac{{\partial I_{pq} }}{\partial \alpha } - \frac{{\partial \hat{I}_{pq} }}{\partial \alpha } = 0 \). Now the proof for step 1 is completed.

Because of the symmetry, (27) is true for step 2 which can be proved using the similar method as step 1. Finally, we can conclude that (27) holds for anisotropy scaling.

Now, the proof for Theorem 1 has been completed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X., Zhang, H., Liu, T. et al. Legendre moment invariants to blur and affine transformation and their use in image recognition. Pattern Anal Applic 17, 311–326 (2014). https://doi.org/10.1007/s10044-012-0273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-012-0273-y

Keywords

Navigation