Skip to main content
Log in

Detection of moving foreground objects in videos with strong camera motion

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Mann S (1997) Wearable computing: a first step toward personal imaging. Computer 30(2):25–32

    Article  Google Scholar 

  2. Hodges S, Williams L, Berry E, Izadi S, Srinivasan J, Butler A, Smyth G, Kapur N, Wood K (2006) SenseCam: a retrospective memory aid, International Conference on Ubiquitous Computing. LNCS 4206:177–193

    Google Scholar 

  3. Personal and ubiquitous computing, special issue on Memory and Sharing of Experiences. (2007) Springer 11(4), pp 213–328

  4. Perez K, Helmer C, Amieva H, Orgogozo J-M, Rouch I, Dartigues J-F, Barberger-Gateau P (2008) Natural history of decline in instrumental activities of daily living performance over the 10 years preceding the clinical diagnosis of dementia: a prospective population-based study. J Am Geriatr Soc 56(1):37–44

    Article  Google Scholar 

  5. Megret R, Szolgay D, Benois-Pineau J, Joly Ph, Pinquier J, Dartigues J-F, Helmer C (2008) Wearable video monitoring of people with age dementia: video indexing at the service of healthcare. In: Proceedings of the International Workshop on Content-Based Multimedia Indexing, London, pp 101–108

  6. Stauffer C, Grimson E (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747–757

    Article  Google Scholar 

  7. Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. Proc Intern Conf Pattern Recognit 2:28–31

    Google Scholar 

  8. Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit Lett 27(7):773–780

    Article  Google Scholar 

  9. Carminati L, Benois-Pineau J (2005) Gaussian mixture classification for moving object detection in video surveillance environment. Proc IEEE Int Conf Image Process 3:113–116

    Google Scholar 

  10. Balcells-Capellades M, DeMenthon D, Doermann D (2004) An appearance-based approach for consistent labeling of humans and objects in video. Pattern Anal Appl 7(4):373–385

    Google Scholar 

  11. Kim K, Chalidabhongse TH, Harwood D, Davis L (2004) Background modeling and subtraction by codebook construction. Proceedings of IEEE International Conference of Image Processing, vol 5, pp 3061–3064

  12. Mittal A, Paragios N (2004) Motion-based background subtraction using adaptive kernel density estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 302–309

  13. Tiand T, Tomasi C, Heeger D (1996) Comparision of approaches to ego-motion computation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 315–320

  14. Foresti GL, Micheloni C (2003) A robust feature tracker for active surveillance of outdoor scenes. Electron Lett Comput Vis Image Anal 1(1):21–34

    Google Scholar 

  15. Jung B, Sukhatme GS (2004) Detecting moving objects using a single camera on a mobile robot in an outdoor environment. In: the Conference on Intelligent Autonomous Systems, Amsterdam, pp 980–987

  16. Jung-Ho A, Cheolmin C, Sooyeong K, Kilcheon K, Hyeran B (2008) Human tracking and silhouette extraction for human–robot interaction systems. Pattern Anal Appl (published online)

  17. Veit T, Cao F, Bouthemy (2006) An a contrario decision framework for region-based motion detection. Intern J Comput Vis 68(2):163–178

    Article  Google Scholar 

  18. Yuan C, Medioni G, Kang J, Cohen I (2007) Detecting motion regions in the presence of a strong parallax from a moving camera by multiview geometric constraints. IEEE Trans Pattern Anal Mach Intell 29(9):1627–1641

    Article  Google Scholar 

  19. Sheikh Y, Shah M (2005) Bayesian modeling of dynamic scenes for object detection. IEEE Trans Pattern Anal Mach Intell 27(11):1778–1792

    Article  Google Scholar 

  20. Bierling M (1988) Displacement estimation by hierarchical block matching. Proc SPIE Vis Commun Image Process 1001:942–951

    Google Scholar 

  21. Accame M, de Natale FGB, Giusto DD (1998) High performance hierarchical block-based motion estimation for real-time video coding. Real-Time Imaging 4(1):67–79

    Article  Google Scholar 

  22. Durik M, Benois-Pineau J (2001) Robust motion characterisation for video indexing based on MPEG2 opticalflow. In: Proceedings of the International Workshop on Content-Based Multimedia Indexing, pp 57–64

  23. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  24. Archambeau C, Valle M, Assenza A, Verleysen M (2006) Assessment of probability density estimation methods: Parzen window and finite Gaussian mixtures. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp 1–4

  25. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. John Wiley & Sons, Inc., NY

  26. Bugeau A (2007) Détection et suivi d’objets en mouvement dans des scènes complexes, application à la surveillance des conducteurs, Thèse de l’université de Rennes 1, Mention Traitement du Signal et des Télécommunications

  27. Epanechnikov (1969) Nonparametric estimates of a multivariate probability density. Theor Probab Appl 14:153–158

  28. M. Ester, H.-P. Kriegel, J. Sander, X. Xu (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of Second International Conference on Knowledge Discovery and Data Mining. Portland, OR, pp 226–231

  29. Sander J, Ester M, Kriegel H-P, Xu X (1998) Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Disc 2:169–194

    Article  Google Scholar 

  30. van Rijsbergen CJ (1979) Information retrieval, 2nd edn. Butterworth-Heinemann, London

    Google Scholar 

  31. http://staff.science.uva.nl/~zivkovic/DOWNLOAD.html

  32. Zivkovic Z, van der Heijden F (2004) Recursive unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 26(5):651–656

    Article  Google Scholar 

  33. Gupta G, Chakrabarti C (1995) Architectures for hierarchical and other block matching algorithm. IEEE Trans Circuits Sys Video Technol 5:477–489

    Article  Google Scholar 

  34. Mazaré S, Pacalet R, Dugelay J-L (2006) Using GPU for fast block-matching. In: 14th European Signal Processing Conference, Florence, Italy

  35. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell T (2007) A survey of general-purpose computation on graphics hardware. Comput Graph Forum 26(1):80–113

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by French national grant “Eiffel doctorate” and research project PEPS S2TI CNRS “Wearable video monitoring: application to surveillance of persons with age dementia”, 2007–2008 and BQR grant of University Bordeaux 1. We also thank Pr. Tamás Szirányi, PPCU, Budapest for fruitful discussion when preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Szolgay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szolgay, D., Benois-Pineau, J., Megret, R. et al. Detection of moving foreground objects in videos with strong camera motion. Pattern Anal Applic 14, 311–328 (2011). https://doi.org/10.1007/s10044-011-0221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0221-2

Keywords

Navigation