Skip to main content
Log in

Analysis of texture characteristics associated with visual complexity perception

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In our previous work we determined that five important characteristics affect the perception of visual complexity of a texture: regularity, roughness, directionality, density, and understandability. In this paper, a set of objective methods for measuring these characteristics is proposed: regularity is estimated by an autocorrelation function; roughness is computed based on local changes; directionality is measured by the maximum line-likeness of edges in different directions; and density is calculated from the edge density. Our analysis shows a significant correlation between the objective measures and subjective evaluations. In addition, for the estimation of understandability, a new approach is proposed. We asked the respondents to name each texture, and then we sorted all these names into different types, including names that were similar. We discovered that understandability is affected by two factors of a texture: the maximum number of similar names assigned to a specific type and the total number of types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Groissboeck, E. Lughofer, and S. Thumfart: Inf. Sci. 180 (2010) 2065.

    Article  Google Scholar 

  2. X. Y. Guo, C. M. Asano, A. Asano, and T. Kurita: 2011 ICBAKE, 2011, p. 260.

  3. R. Scha and R. Bod: Inf. Informatiebeleid 11 (1993) 54 [in Dutch].

    Google Scholar 

  4. F. Heylighen: The Evolution of Complexity (Kluwer Academic Press, Dordrecht, 1997) p. 17.

    Google Scholar 

  5. C. Heaps and S. Handel: J. Exp. Psychol. Hum. Percept. Perform. 25 (1999) 299.

    Article  Google Scholar 

  6. W. Li: Complex Syst. 5 (1991) 381.

    MATH  Google Scholar 

  7. A. Olive, M. L. Mack, M. Shrestha, and A. Peeper: Proc. 26th Annu. Meet. Congnitive Society, 2004, p. 1041.

  8. R. Pieters, M. Wedel, and R. Batra: J. Mark. 74 (2010) 48.

    Article  Google Scholar 

  9. W. Saleem, A. Belyaev, D. Wang, and H. P. Seidel: Comput. Graph. 35 (2011) 580.

    Article  Google Scholar 

  10. Y. A. Andrienko, N. V. Brilliantov, and J. Kurths: Eur. Phys. J. B 15 (2000) 539.

    Article  ADS  Google Scholar 

  11. L. N. Patel and P. Holt: 2000 ACIV, 2000, p. 119.

  12. J. Rigau, M. Feixas, and M. Sbert: Eurographics Workshop Computational Aesthetics in Graphics, Visualization and Imaging, 2005, p. 177.

  13. M. Cardaci, V. D. Gesu, M. Petrou, and M. E. Tabacchi: Fuzzy Sets Syst. 160 (2009) 1474.

    Article  Google Scholar 

  14. E. Michailidou: Accessibility Comput. 86 (2006) 24.

    Article  Google Scholar 

  15. H. Tamura, S. Mori, and T. Yamawaki: IEEE Trans. Syst. Man Cybern. 8 (1978) 460.

    Article  Google Scholar 

  16. M. Amadasun and R. King: IEEE Trans. Syst. Man Cybern. 19 (1989) 1264.

    Article  Google Scholar 

  17. K. Fujii, S. Sugi, and Y. Ando: Psychol. Res. 67 (2003) 197.

    Article  Google Scholar 

  18. L. Li, A. Asano, and C. Muraki Asano: Opt. Rev. 17 (2010) 90.

    Article  Google Scholar 

  19. A. R. Rao and G. L. Lohse: GVGIP: Graphical Models Image Process. 55 (1993) 218.

    Article  Google Scholar 

  20. A. Ravishankar Rao and G. L. Lohse: Vision Res. 36 (1996) 1649.

    Article  Google Scholar 

  21. Y. R. Cho, V. Yang, and P. E. Hallett: Percept. Psychophys. 62 (2000) 735.

    Article  Google Scholar 

  22. P. Brodatz: Textures: A Photographic Album for Artists and Designers (Dover, New York, 1966).

    Google Scholar 

  23. M. Kokubun, M. Konishi, M. Kuwasumi, and H. Iguchi: Proc. 26th Annu. Conf. IEEE Industrial Electronics Society (IECON 2000) 3 (2000) 1592.

    Google Scholar 

  24. C. H. Coombs, R. M. Dawes, and A. Tversky: Mathematical Psychology: An Elementary Introduction (Prentice-Hall, Englewood Cliffs, NJ, 1970) p. 235.

    MATH  Google Scholar 

  25. H. C. Lin, L. L. Wang, and S. N. Yang: Pattern Recognit. Lett. 18 (1997) 433.

    Article  Google Scholar 

  26. G. Vaidyanathan and P. M. Lynch: Proc. IEEE Energy and Information Technologies in the Southeast (Southeastcon’89) 2 (1989) 733.

    Article  Google Scholar 

  27. R. V. Egmond, P. Lemmens, T. N. Pappas, and H. D. Ridder: Proc. SPIE Proc. 7240 (2009) 72400B.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Asano, C.M., Asano, A. et al. Analysis of texture characteristics associated with visual complexity perception. OPT REV 19, 306–314 (2012). https://doi.org/10.1007/s10043-012-0047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-012-0047-1

Keywords

Navigation