Skip to main content
Log in

Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, and H. Koizumi: Med. Phys. 22 (1995) 1997.

    Article  Google Scholar 

  2. Y. Yamashita, A. Maki, and H. Koizumi: J. Biomed. Opt. 4 (1999) 414.

    Article  ADS  Google Scholar 

  3. A. Villringer and B. Chance: Trends Neurosci. 20 (1997) 435.

    Article  Google Scholar 

  4. Y. Hoshi: Psychophysiology 40 (2003) 511.

    Article  Google Scholar 

  5. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy: Phys. Med. Biol. 41 (1996) 767.

    Article  Google Scholar 

  6. H. Dehghani and D. T. Delpy: Appl. Opt. 39 (2000) 4721.

    Article  ADS  Google Scholar 

  7. E. Okada and D. T. Delpy: Appl. Opt. 42 (2003) 2906.

    Article  ADS  Google Scholar 

  8. N. Chauveau, X. Franceries, B. Doyon, B. Rigaud, J. P. Morucci, and P. Celsis: Hum. Brain Mapp. 21 (2004) 86.

    Article  Google Scholar 

  9. Y. Yamada and Y. Hasegawa: JSME Int. J., Ser. B 39 (1996) 754.

    Google Scholar 

  10. E. Okada and D. T. Delpy: Appl. Opt. 42 (2003) 2915.

    Article  ADS  Google Scholar 

  11. Y. Fukui, Y. Ajichi, and E. Okada: Appl. Opt. 42 (2003) 2881.

    Article  ADS  Google Scholar 

  12. M. Firbank, E. Okada, and D. T. Delpy: NeuroImage 8 (1998) 69.

    Article  Google Scholar 

  13. H. Kawaguchi, T. Hayashi, T. Kato, and E. Okada: Phys. Med. Biol. 49 (2004) 2753.

    Article  Google Scholar 

  14. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt: Phys. Med. Biol. 33 (1988) 1433.

    Article  Google Scholar 

  15. D. T. Sandwell: Geophys. Res. Lett. 14 (1987) 139.

    Article  ADS  Google Scholar 

  16. T. Koyama, A. Iwasaki, Y. Ogoshi, and E. Okada: Appl. Opt. 44 (2005) 2094.

    Article  ADS  Google Scholar 

  17. H. Zhao, Y. Tanikawa, F. Gao, Y. Onodera, A. Sassaroli, K. Tanaka, and Y. Yamada: Phys. Med. Biol. 47 (2002) 2075.

    Article  Google Scholar 

  18. W. F. Cheong, S. A. Prahl, and A. J. Welch: IEEE J. Quantum Electron. 26 (1990) 2166.

    Article  ADS  Google Scholar 

  19. T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, and H. Koizumi: Phys. Med. Biol. 47 (2002) 3429.

    Article  Google Scholar 

  20. B. C. Wilson and G. Adam: Med. Phys. 10 (1983) 824.

    Article  Google Scholar 

  21. J. J. Duderstadt and L. J. Hamilton: Nuclear Reactor Analysis (Wiley, New York, 1976) Chap. 4.

    Google Scholar 

  22. A. Ishimaru: Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978) Vol. 1.

    Google Scholar 

  23. Y. Yamada: in Annual Review of Heat Transfer, ed. C.-L. Tien (Begell House, New York, 1995) Vol. VI, p. 1.

    Google Scholar 

  24. K. Furutsu and Y. Yamada: Phys. Rev. E 50 (1994) 3634.

    Article  ADS  Google Scholar 

  25. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch: Appl. Opt. 22 (1983) 2456.

    Article  ADS  Google Scholar 

  26. J. Haselgrove, J. Leigh, C. Yee, N. G. Wang, M. Maris, and B. Chance: Proc. SPIE 1431 (1991) 30.

    Article  ADS  Google Scholar 

  27. T. J. Farrell, M. S. Patterson, and B. Wilson: Med. Phys. 19 (1992) 879.

    Article  Google Scholar 

  28. S. Takahashi and Y. Yamada: Advances in Optical Imaging and Photon Migration (AOIPM) 1998 (Optical Society of America, Washington, D.C., 1998) OSA Trends in Optics and Photonics (TOPS) Vol. 21, p. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Shibahara, N., Kuramashi, D. et al. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities. OPT REV 17, 410–420 (2010). https://doi.org/10.1007/s10043-010-0076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-010-0076-6

Keywords

Navigation