Skip to main content
Log in

Wavelet Denoising for Tomographically Reconstructed Image

  • INFORMATION OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We have developed a wavelet denoising (thresholding) method for a tomographically reconstructed image to which the conventional wavelet methods are not necessarily applicable because of their limitation of applicable noise models. The basic idea of our new method is that noise variance is, in general, spatially varying and the threshold must be adapted to it. Specifically, our algorithm includes two key steps: The first is to estimate local variances in image space to produce a “σ-map”. The second is to calculate the standard deviations of individual wavelet coefficients from the σ-map by a formula of “covariance propagation”. Spatially adaptive thresholds are then given as those proportional to the standard deviations. Our method is applicable to a wider range of noise models, and numerical experiments have shown that it can yield a denoised image with 10% less residual error than that in the boxcar smoothing or the median filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Taswell: Comput. Sci. Eng. 2 (2000) 12.

    Article  Google Scholar 

  2. S. G. Chang, B. Yu and M. Vetterli: IEEE Trans. Image Process. 9 (2000) 1522.

    Google Scholar 

  3. S. G. Chang, B. Yu and M. Vetterli: IEEE Trans. Image Process. 9 (2000) 1532.

    Google Scholar 

  4. L. Sendur and I. W. Selesnick: IEEE Signal Process. Lett. 9 (2002) 438.

    Google Scholar 

  5. M. A. T. Figueiredo and R. D. Nowak: Proc. SPIE 3816 (1999) 97.

  6. G. Jammal: Ph. D thesis, Technischen Universitat Darmstadt, 2000.

  7. J.-L. Starck and F. Murtagh: Astron. Astrophys. 288 (1994) 342.

    ADS  Google Scholar 

  8. J.-L. Starck, F. Murtagh and A. Bijaoui: Proc. SPIE 2302 (1994) 132.

  9. H. Bourdin, E. Slezak, A. Bijaoui and M. Arnaud: Proc. 21st Moriond Astrophysics Meet., Savoie, France, 2001.

  10. Y. Y. Shih, J. C. Chen and R. S. Liu: Comput. Med. Imaging Graphics 29 (2005) 297.

    Article  Google Scholar 

  11. D. W. Wilson and B. M. W. Tsui: IEEE Trans. Nucl. Sci. 40 (1993) 1198.

    Google Scholar 

  12. H. H. Barrett, D. W. Wilson and B. M. W. Tsui: Phys. Med. Biol. 39 (1994) 833.

    Article  Google Scholar 

  13. D. W. Wilson, B. M. W. Tsui and H. H. Barrett: Phys. Med. Biol. 39 (1994) 847.

    Article  Google Scholar 

  14. D. L. Donoho and I. M. Johnstone: Biometrika 81 (1994) 425.

    Article  MathSciNet  Google Scholar 

  15. D. L. Donoho: IEEE Trans. Inf. Theory 41 (1995) 613.

    Google Scholar 

  16. A. K. Fletcher, V. K. Goyal and K. Ramchandran: Proc. SPIE 5207 (2003) 9.

    Google Scholar 

  17. P. F. Craigmile and D. B. Percival: in Encyclopedia of Environmetrics, ed. A. H. El-Shaarawi and W. W. Piegorsch (John Wiley & Sons, New York, 2002) Vol. 4, p. 2334.

    Google Scholar 

  18. A. C. Kak and M. Slaney: Principles of Computerized Tomographic Imaging (IEEE, New York, 1988).

    Google Scholar 

  19. S. Alenius and U. Ruotsalainen: Eur. J. Nucl. Med. 24 (1997) 258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Kuwamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwamura, S. Wavelet Denoising for Tomographically Reconstructed Image. OPT REV 13, 129–137 (2006). https://doi.org/10.1007/s10043-006-0129-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-006-0129-z

Key words

Navigation