Skip to main content
Log in

Digital Staining of Unstained Pathological Tissue Samples through Spectral Transmittance Classification

  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Histological structures of a pathological tissue sample convey information relevant to the diagnosis of the disease that might have afficted the person. To reveal the morphology of these structures clearly, pathological tissues are stained. In this paper, a digital staining methodology for pathological tissue samples is introduced. Digital staining implies the application of digital processing techniques to transform the image of an unstained sample to its stained image counterpart. In the method, the transmittance spectra of the unstained and Hematoxylin and Eosin (H&E) stained multispectral images (16 bands) of specific tissue components are utilized. Two experiments were conducted to probe the possibility of the digital staining framework: the linear mapping of spectral transmittances, and the classification of spectral transmittances in conjunction with the linear mapping of specific transmittance data sets. The method classified the four tissue components, e.g. nucleus, cytoplasm, red blood cells, and the white region (region devoid of tissue structures), while the misclassifications between components with spectral transmittances that are closely similar were not completely rectified. © 2005 The Optical Society of Japan

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Ornberg, B. M. Woerner and D. A. Edwards: J. Histochem. & Cytochem. 47 (1999) 1307.

    Google Scholar 

  2. J. Lěvesque and D. J. King: Remote Sensing Environ. 84 (2003) 589.

    Google Scholar 

  3. M. Berman: IEEE Trans. Pattern Anal. & Mach. Intell. 16 (1994) 460.

    Google Scholar 

  4. J. W. Bacus and L. J. Grace: Appl. Opt. 26 (1987) 3280.

    Article  ADS  Google Scholar 

  5. P. R. Barber, B. Vojnovic, G. Atkin, F. M. Daley, S. A. Everett, G. D. Wilson and J. D. Gilbey: J. Phys. D 36 (2003) 1729.

    ADS  Google Scholar 

  6. M. A. Roula, J. Diamond, A. Bouridane, P. Miller and A. Amira: Proc. IEEE Int. Symp. Biomedical Imaging, Washington D.C., USA, 2002, p. 193.

  7. L. T. Zhao and J. Zhang: Proc. IEEE Int. Symp. Biomedical Imaging, Washington D.C., USA, 2002, p. 169.

  8. M. Takeya, N. Tsumura, H. Haneishi and Y. Miyake: Appl. Opt. 38 (1999) 3644.

    Article  ADS  Google Scholar 

  9. A. Papadakis, E. Stathopoulos, G. Delides, K. Berberides, G. Nikiforidis and C. Balas: IEEE Trans. Biomed. Eng. 50 (2003) 207.

    Google Scholar 

  10. K. Fujii, M. Yamaguchi, N. Ohyama and K. Mukai: Proc. SPIE Biomed. Imaging 4684 (2002) 1516.

    ADS  Google Scholar 

  11. T. Abe, N. Ohyama, M. Yamaguchi, Y. Murakami and Y. Yagi: Advancing Practice Instruction and Innovation Through Informatics, Pittsburgh, PA, 2003.

  12. D. L. Farkas, D. Congwu, G. W. Fisher, C. Lau, N. Wenhua, E. S. Wachman and R. M. Levenson: Computerized Medical Imaging and Graphics 22 (1998) 89.

    Google Scholar 

  13. J. Y. Qu and H. Chang: J. Opt. Soc. Am. A 19 (2002) 1823.

    ADS  Google Scholar 

  14. B. C. Wilson and S. L. Jacques: IEEE J. Quantum Electronics 26 (1990) 2186.

    ADS  Google Scholar 

  15. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari and M. S. Feld: Nature Medicine 7 (2001) 1245.

    Google Scholar 

  16. H. Fukuda, N. Ohyama, M. Yamaguchi and T. Wada: Advancing Practice Instruction and Innovation Through Informatics, Pittsburgh, PA, 2002.

  17. K. Y. Yeung and W. L. Ruzzo: Bioinformatics 17 (2001) 763.

    Google Scholar 

  18. Andrew R. Webb: Statistical Pattern Recognition (John Wiley & Sons, Ltd., 2002) 2nd ed. Ch. 3, p. 93.

  19. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomiya, Y. Murakami and N. Ohyama: SPIE 4663 (2002) 15.

  20. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomiya, Y. Murakami and N. Ohyama: SPIE 4663 (2002) 15.

    ADS  Google Scholar 

  21. R. C. Gonzales and R. E. Woods: Digital Image Processing (Prentice-Hall Inc., 2002) ch. 3, p. 119

  22. L. C. Junqueira, J. Carneiro and R. O. Kelly: Basic Histology, Sixth Edition (Prentice-Hall Inc., 1989) 6th ed., ch. 12, p. 229.

  23. L. P. Gartner and J. Hiatt: Color Atlas of Histology (Williams and Wilkins, 1990), ch. 1 p. 12 and ch. 5, p 71.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautista, P.A., Abe, T., Yamaguchi, M. et al. Digital Staining of Unstained Pathological Tissue Samples through Spectral Transmittance Classification. OPT REV 12, 7–14 (2005). https://doi.org/10.1007/s10043-005-0007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-005-0007-0

Key words

Navigation