Skip to main content

Advertisement

Log in

Mechanism of groundwater recharge in the middle-latitude desert of eastern Hunshandake, China: diffuse or focused recharge?

Mécanisme de recharge des eaux souterraines dans le désert de moyenne latitude de l’est d’Hunshandake, Chine: infiltration diffuse ou concentrée?

Mecanismo de recarga del agua subterránea en el desierto de latitudes medias del este de Hunshandake, China: ¿recarga difusa o concentrada?

中纬度中国浑善达克沙地东部地下水的补给机制:扩散补给还是集中补给?

Mecanismos de recarga subterrânea no deserto de média latitude de Hunshandake oriental, China: recarga difusa ou pontual?

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Although water is scarce in most deserts of the world, the middle-latitude desert of Hunshandake, China, has abundant water resources, mainly groundwater. In this study, isotopic and hydrochemical compositions were investigated to understand the recharge of groundwater in this desert. The groundwaters are fresh and depleted in δ2H and δ18O, compared with modern precipitation, but have high values of tritium (5–25 TU), indicating that these groundwaters are likely less than 70 years old but not of meteoric origin. Clear differences were observed between the north and south parts of the desert. Groundwater in the northern part is characterized by lower landform elevation, lower ion concentrations, higher tritium contents, higher deuterium excess, and more depleted values of δ2H and δ18O than that in the southern part. This indicates a discrepancy between the topographic hydraulic gradient and the isotopic and hydrochemical gradients of groundwater in the desert. It also implies different water sources between the two areas. Combined analysis was further performed on natural waters from the Dali Basin and surrounding mountains. It indicated that groundwater in the north is mainly sourced from the Daxin’Anling Mountains, by leaking of the Xilamulan River water through a thick faulted aquifer. Groundwater in the south has two sources, the Yinshan Mountains and Daxing’Anlin Mountains. Therefore, modern focused recharge is more significant for groundwater recharge in the desert than the mechanisms of diffuse recharge. A conceptual model of groundwater recharge is proposed: the MTVG (mountain water – tectonic fault hydrology – unconfined vadose zone – groundwater) mechanism.

Résumé

Bien que l’eau soit rare dans la majorité des déserts du monde, le désert de moyenne latitude d’Hunshandake, Chine, montre d’abondantes ressources en eau, principalement des eaux souterraines. Dans cette étude, la composition isotopique et hydrochimique des eaux souterraines a été étudiée afin de comprendre les processus de recharge dans le désert. Les eaux souterraines sont douces et appauvries en δ2H et δ18O par rapport aux précipitations actuelles, mais montrent des valeurs élevées en tritium (5–25 UT), indiquant vraisemblablement des eaux de moins de 70 ans d’origine autre que météorique. Des différences marquées ont été observées entre les parties nord et sud du désert. Comparée à la partie sud, les eaux souterraines de la partie nord sont caractérisées par des concentrations ioniques moins élevées, des teneurs plus élevées en tritium, un excès en deutérium plus marqué, des valeurs plus appauvries en δ2H et δ18O, et une altitude moins élevée en surface. Cela indique une différence entre le gradient hydraulique topographique et les gradients isotopique et chimique des eaux souterraines du désert. Cela implique également des eaux d’origine différente entre les deux secteurs. En complément, une analyse a été conduite sur les eaux naturelles du Bassin de Dali et les montagnes environnantes. Celle-ci indique que les eaux souterraines du nord sont essentiellement alimentées par les montagnes de Daxin’Anling, par infiltration des eaux de la rivière Xilamulan au travers d’un aquifère épais et faillé. L’eau souterraine du secteur sud a deux provenances: les montagnes de Yinshan et les montagnes de Daxing’Anlin. De fait, dans ce désert, la recharge actuelle par infiltration concentrée est prépondérante par rapport à l’infiltration diffuse. Un modèle conceptuel de recharge de l’aquifère est proposé: le mécanisme MTVG (eau de montagne – hydrogéologie de faille tectonique – zone vadose libre – eau souterraine).

Resumen

Aunque el agua es escasa en la mayoría de los desiertos del mundo, el desierto de Hunshandake, China, de latitudes medias, tiene abundantes recursos hídricos, principalmente subterráneos. En este estudio, se investigaron las composiciones isotópicas e hidroquímicas para comprender la recarga de agua subterránea en este desierto. Las aguas subterráneas son recientes y empobrecidas en δ2H y δ18O, en comparación con la precipitación actual, pero tienen valores altos de tritio (5–25 TU), lo que indica que estas aguas subterráneas probablemente tengan menos de 70 años pero que no sean de origen meteórico. Se observaron diferencias claras entre las partes norte y sur del desierto. El agua subterránea en la parte norte se caracteriza por menores elevaciones en el relieve, menores concentraciones de iones, mayores contenidos de tritio, mayor exceso de deuterio y valores más empobrecidos de δ2H y δ18O en la parte sur. Esto indica una discrepancia entre el gradiente hidráulico topográfico y los gradientes isotópicos e hidroquímicos del agua subterránea en el desierto. También implica diferentes fuentes de agua entre las dos áreas. El análisis combinado se realizó en aguas naturales de la cuenca de Dalí y las montañas circundantes. Ello Indicó que el agua subterránea en el norte proviene principalmente de las montañas Daxin’Anling, por filtración de agua del río Xilamulan a través de un acuífero fracturados de gran espesor. El agua subterránea en el sur tiene dos fuentes, las montañas Yinshan y las montañas Daxing’Anlin. Por lo tanto, la recarga concentrada actual es más significativa para la recarga de agua subterránea en el desierto que los mecanismos de recarga difusa. Se propone un modelo conceptual de recarga de aguas subterráneas: el mecanismo MTVG (agua de montaña – hidrología de fallas tectónicas – zona vadosa no confinada – aguas subterráneas).

摘要

尽管全球的大部分荒漠地区都缺水,但中纬度的中国浑善达克沙地却具有较为丰富的水资源,主要是地下水。本研究调查了该沙漠地下水的同位素和水化学组成,以期了解该沙漠地下水的补给。研究结果显示,这里的地下水都是淡水,但其δ2H 和 δ18O 值都比现代降水还亏损,而水的氚含量却很高(5–25 TU),表明这些地下水的年龄不到70年且不是大气成因。该沙漠北部和南部地下水有明显的差异。与沙漠南部相比,沙漠北部地形海拔较低,地下水的离子浓度较低、氚含量较高、氘盈余更高以及δ2H 和 δ18O值更亏损。表明该沙漠的地形水力梯度与地下水的同位素和水化学梯度不一致。这意味着该沙漠南北两个地区之间的地下水存在着不同的水源。本研究进一步综合分析了来自沙漠北部的达里盆地及其周围山脉的天然水体。结果表明,沙漠北部的地下水可能主要源自大兴安岭山脉,该山区水通过深厚的西拉木伦断层系补给了沙漠北部地下水;沙漠南部的地下水有两个来源,阴山山脉和大兴安岭山脉。总体来说,该沙漠的地下水补给主要受控于现代集中式补给机制,而不是扩散补给机制。本文提出了一个沙漠地下水补给机制的概念模型:MTVG模型(即山区水—构造断层水文—非承压包气带—地下水补给机制)。

Resumo

Apesar da escassez de água na maioria dos desertos do mundo, o deserto de média latitude de Hunshandake, na China, possui recursos hídricos em abundância, principalmente subterrâneos. Neste estudo, foram investigadas composições isotópicas e hidroquímicas para compreender a recarga subterrânea nesse deserto. As águas subterrâneas são recentes e pobres em δ2H e δ18O, comparadas com as precipitações recentes, mas possuem valores elevados de trítio (5–25 TU), indicando que essas águas são, mais provavelmente, de idade inferior a 70 anos e de origem não meteórica. Diferenças claras foram observadas entre as partes norte e sul do deserto. As águas subterrâneas na parte norte é caracterizada pela menor elevação topográfica, baixa concentração de íons, maior teor de trítio, maior excesso de deutério e valores inferiores de δ2H e δ18O que as da parte sul. Isso indica a discrepância entre o gradiente hidráulico topográfico e os gradientes isotópicos e hidroquímicos das águas subterrâneas no deserto. Isso também implica em diferentes fontes de água entre as duas áreas. Uma análise combinada foi realizada posteriormente nas águas naturais da Bacia de Dali e nas montanhas aos arredores. Isso indicou que a água subterrânea no norte é, principalmente, originada das Montanhas de Daxin’Anling, através da decarga do Rio Xilamulan em um espesso aquífero em um falhamento. As águas subterrâneas no sul tem duas fontes: as Montanhas de Yinshan e as Montanhas de Daxing’Anlin. Desta forma, a recarga concentrada recente é mais significante para recarga subterrânea no deserto do que os mecanismos difusos de recarga. Um modelo conceitual de recarga é proposto: o MTVG (água da montanha – hidrologia de falha tectônica – zona vadosa não confinada – água subterrânea).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdalla OA (2009) Groundwater recharge/discharge in semi-arid regions interpreted from isotope and chloride concentrations in North White Nile Rift, Sudan. Hydrogeol J 17:679–692

    Google Scholar 

  • Al-Bassam AM, Khalil AR (2012) Durov Pwin: a new version to plot the expanded Durov diagram for hydro-chemical data analysis. Comput Geosci 42:1–6

    Google Scholar 

  • Al-Bassam AM, Awad HS, Al-Alawi JA (1997) Durov Plot: a computer program for processing and plotting hydrochemical data. Ground Water 35:362–367

    Google Scholar 

  • Ajami H, Troch PA, Maddock TIII, Meixner T, Eastoe C (2011) Quantifying mountain block recharge by means of catchment-scale storage–discharge relationships. Water Resour Res 47:W04504. https://doi.org/10.1029/2010WR009598

    Google Scholar 

  • Baeza A, Garcia E, Miro C (1999) A procedure for the determination of very low activity levels of tritium in water samples. J Radioanal Nucl Chem 241:93–100

    Google Scholar 

  • Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth Sci Rev 127:171–192

    Google Scholar 

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121–152

    Google Scholar 

  • Blasch KW, Bryson JR (2007) Distinguishing sources of ground water recharge by using δ2H and δ18O. Groundwater 45:294–308

    Google Scholar 

  • Boronina A, Renard P, Balderer W, Stichler W (2005) Application of tritium in precipitation and in groundwater of the Kouris catchment (Cyprus) for description of the regional groundwater flow. Appl Geochem 20:1292–1308

    Google Scholar 

  • Chadha DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439

    Google Scholar 

  • Chen J, Li L, Wang J, Barry DA, Sheng X, Gu W, Zhao X, Chen L (2004) Water resources: groundwater maintains dune landscape. Nature 432:459–460

    Google Scholar 

  • Chen YP, Gu ZY, Chu GQ, Xu B, Lu YW, Sun XH (2009) Lacustrine sediment record for activities of wind and dust in the Hunshandake Desert during the last 50 years from Xiarinao Lake (in Chinese with English abstract). Quatern Sci Rev 29(4):774–780

    Google Scholar 

  • Chen F, Chen J, Holmes J, Boomer I, Austin P, Gates JB, Wang N, Brooks SJ, Zhang J (2010) Moisture changes over the last millennium in arid Central Asia: a review, synthesis and comparison with monsoon region. Quatern Sci Rev 29:1055–1068

    Google Scholar 

  • Chen J, Liu X, Wang C, Rao W, Tan H, Dong H, Sun X, Wang Y, Su Z (2012a) Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environ Earth Sci 66:505–517

    Google Scholar 

  • Chen J, Sun X, Gu W, Tan H, Rao W, Dong H, Liu X, Su Z (2012b) Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert, northern China. Geochem Int 50:455–465

    Google Scholar 

  • Chen J, Chen X, Wang T (2014) Isotopes tracer research of wet sand layer water sources in Alxa Desert (in Chinese). Adv Water Sci 25:196–206

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • Cunningham EEB, Long A, Eastoe C, Bassett RL (1998) Migration of recharge waters downgradient from the Santa Catalina Mountains into the Tucson basin aquifer, Arizona, USA. Hydrogeol J 6:94–103

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Google Scholar 

  • Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical Northwest Australia. J Hydrol 475:281–293

    Google Scholar 

  • Doll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. https://doi.org/10.1088/1748-9326/4/3/035006

    Google Scholar 

  • Doll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885

    Google Scholar 

  • Drever JI (1997) Catchment mass balance. In: Saether OM, de Caritat P (eds) Geochemical processes, weathering and groundwater recharge in catchments. Balkema, Rotterdam, The Netherlands, pp 241–261

    Google Scholar 

  • Durov SA (1948) Natural waters and graphic representation of their composition. Dokl Akad Nauk SSSR 59:87–90

    Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21:2148–2170

    Google Scholar 

  • Eissa MA, Thomas JM, Hershey RL, Dawoud MI, Pohll G, Dahab KA, Gomaa MA, Shabana AR (2014) Geochemical and isotopic evolution of groundwater in the Wadi Watir watershed, Sinai Peninsula, Egypt. Environ Earth Sci 71:1855–1869

    Google Scholar 

  • Eizenhöfer PR, Zhao G, Zhang J, Sun M (2014) Final closure of the paleo-Asian Ocean along the Solonker Suture Zone: constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 33:441–463

    Google Scholar 

  • Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid Southwest Niger: a review. Water Resour Res 45(7):450–455

    Google Scholar 

  • Gat JR (1983) Precipitation, groundwater and surface waters: control of climate parameters on their isotopic composition and their utilization as palaeoclimatological tools. In: Palaeoclimates and palaeowaters: a collection of environmental isotope studies. Proc. Adv. Gp. Meeting, IAEA, Vienna, 25–28 Nov 1980, pp 3–12

  • Gat JR, Issar A (1974) Desert isotope hydrology: water sources of the Sinai Desert. Geochim Cosmochim Acta 38:1117–1131

    Google Scholar 

  • Gates J, Edmunds WM, Ma J, Scanlon B (2008) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910

    Google Scholar 

  • Ge X, Li Y, Luloff AE, Dong K, Xiao J (2015) Effect of agricultural economic growth on sandy desertification in Horqin Sandy Land. Ecol Econ 119:53–63

    Google Scholar 

  • Giordano M (2009) Global groundwater? Issues and solutions. Ann Rev Environ Resour 34:153–178

    Google Scholar 

  • Gong ZJ, Li SH, Sun JM, Xue L (2013) Environmental changes in Hunshandake (Otindag) sandy land revealed by optical dating and multi-proxy study of dune sands. J Asian Earth Sci 76:30–36

    Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations. Analyst 77(11–12):945–947

    Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495

    Google Scholar 

  • Guo L, Xiong S, Ding Z, Jin G, Wu J, Ye W (2018) Role of the mid-Holocene environmental transition in the decline of late Neolithic cultures in the deserts of NE China. Quatern Sci Rev 190:98–113

    Google Scholar 

  • Harrington GA, Cook PG, Herczeg AL (2002) Spatial and temporal variability of ground water recharge in Central Australia: a tracer approach. Ground Water 40:518–527

    Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, New York

    Google Scholar 

  • Herczeg AL, Leaney F (2011) Review: environmental tracers in arid-zone hydrology. Hydrogeol J 19:17–29

    Google Scholar 

  • IMBGMR (Inner Mongolian Bureau of Geology and Mineral Resources) (1991) Regional geology of the Inner Mongolian Autonomous Region (in Chinese with English abstract). Geological Publishing House, Beijing, 725 pp

  • Jahn BM (2004) The central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol Soc Lond Spec Publ 226:73–100

    Google Scholar 

  • Jian P, Liu D, Kroner A, Windley BF, Shi Y, Zhang W, Zhang F, Miao L, Zhang L, Tomurhuu D (2010) Evolution of a Permian intraoceanic arc-trench system in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118:169–190

    Google Scholar 

  • Jobbágy E, Nosetto M, Villagra P, Jackson R (2011) Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol Appl 21:678–694

    Google Scholar 

  • Johnson CL (2004) Polyphase evolution of the East Gobi Basin: sedimentary and structural records of Mesozoic–Cenozoic intraplate deformation in Mongolia. Basin Res 16:79–99

    Google Scholar 

  • Kaufman SLWF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344

    Google Scholar 

  • Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken, NJ

    Google Scholar 

  • Khalid B, Hamid C (2017) Using major ion and stables isotopes to characterize groundwater recharge and hydrochemical processes in a mountain–plain area: a case study in High-Atlas of Marrakech, Morocco. J Environ Earth Sci 7:100–114

    Google Scholar 

  • Lawrence AR, Lloyd JW, Marsh JM (1976) Hydrochemistry and ground-water mixing in part of the Lincolnshire Limestone aquifer, England. Ground Water 14:320–327

    Google Scholar 

  • Li JY (2006) Permian geodynamic setting of Northeast China and adjacent regions: closure of the paleo-Asian Ocean and subduction of the paleo-Pacific plate. J Asian Earth Sci 26:207–224

    Google Scholar 

  • Li S, Sun W, Li X, Zhang B (1995) Sedimentary characteristics and environmental evolution of Otindag sandy land in the Holocene (in Chinese). J Desert Res 15:323–331

    Google Scholar 

  • Li SH, Sun JM, Zhao H (2002) Optical dating of dune sands in the northeastern deserts of China. Palaeogeogr Palaeoclimatol Palaeoecol 181:419–429

    Google Scholar 

  • Li JY, Gao LM, Sun GH, Li YP, Wang YB (2007) Shuangjingzi middle Triassic syncollisional crust-derived granite in East Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates (in Chinese with English abstract). Acta Petrol Sin 23(3):565–582

    Google Scholar 

  • Li JY, Xu B, Yang XC, Jin YX, Li YY, Zhang J, Zhao LN, Li RL (2011) Dynamic changes and driving force of grassland sandy desertification in Xilin Gol: a case study of Zhenglan Banner (in Chinese with English abstract). Geogr Res 9(30):1669–1682

    Google Scholar 

  • Li P, Yang TT, Wu XH, Lü XH, Liu TH (2013) Climate change in Zhenglan Banner, Inner Mongolia in recent 40 years (in Chinese with English abstract). Arid Zone Res 30(5):776–780

    Google Scholar 

  • Li Y, Zhou H, Brouwer FM, Xiao W, Wijbrans JR, Zhong Z (2014) Early Paleozoic to Middle Triassic bivergent accretion in the central Asian Orogenic Belt: insights from zircon U–Pb dating of ductile shear zones in Central Inner Mongolia, China. Lithos 205:84–111

    Google Scholar 

  • Li W, Li C, Jia D, Hao S, Liu Z, Li R (2017) Changes in stable isotopes in summer precipitation in Central Inner Mongolia (in Chinese with English abstract). Arid Zone Res 34(6):1214–1224

    Google Scholar 

  • Liu Y, Yamanaka T (2012) Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. J Hydrol 464–465:116–126

    Google Scholar 

  • Liu Z, Yang X (2013) Geochemical-geomorphological evidence for the provenance of aeolian sands and sedimentary environments in the Hunshandake Sandy land, eastern Inner Mongolia, China. Acta Geologica Sinica (English edn.) 87:871–884

    Google Scholar 

  • Liu J, Song X, Yuan G, Sun X (2014) Stable isotopic compositions of precipitation in China. Tellus B 66:1–17

    Google Scholar 

  • Lloyd JW, Heathcote JA (1985) Natural inorganic hydrochemistry in relation to groundwater: an introduction. Clarendon, Oxford, UK

    Google Scholar 

  • Love AJ, Herczeg AL, Leaney FW, Stadter MH, Dighton JC, Armstrong D (1994) Groundwater residence time and palaeohydrology in the Otway Basin, South Australia: 2H, 18O and 14C data. J Hydrol 153:157–187

    Google Scholar 

  • Love AJ, Herczeg AL, Sampson L, Cresswell RG, Fifield LK (2000) Sources of chloride and implications for 36Cl dating of old groundwater, south-western Great Artesian Basin, Australia. Water Resour Res 36(6):1561–1574

    Google Scholar 

  • Lu HY, Miao XD, Zhou YL, Mason J, Swinehart J, Zhang JF, Zhou LP, Yi SW (2005) Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (North China) and lagged response to insolation forcing. Geophys Res Lett 32(21):2465–2475

    Google Scholar 

  • Ma J, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeol J 14:1231–1243

    Google Scholar 

  • Ma J, Ding Z, Gates JB, Su Y (2008) Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, Northwest China. Environ Geol 55:1407–1419

    Google Scholar 

  • Ma J, Pan F, Chen L, Edmunds WM, Ding Z, He J, Zhou K, Huang T (2010) Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Appl Geochem 25:996–1007

    Google Scholar 

  • Ma J, He J, Qi S, Zhu G, Zhao W, Edmunds MW, Zhao Y (2013) Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Appl Geochem 28:19–31

    Google Scholar 

  • Meng QR (2003) What drove Late Mesozoic extension of the northern China–Mongolia tract? Tectonophysics 369:155–174

    Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res Oceans 84(C8):5029–5033

    Google Scholar 

  • Meybeck M (2004) Global occurrence of major elements in rivers. In: Drever JI (ed) Surface and ground water, weathering, and soils. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol 5. Elsevier-Pergamon, Oxford, UK, pp 207–223

  • Mueller JF, Rogers JJW, Jin YG, Wang H, Li W, Chronic J, Mueller JF (1991) Late Carboniferous to Permian sedimentation in Inner Mongolia, China, and tectonic relationships between north China and Siberia. J Geol 99:251–263

    Google Scholar 

  • Nakaya S, Uesugi K, Motodate Y, Ohmiya I, Komiya H, Masuda H, Kusakabe M (2007) Spatial separation of groundwater flow paths from a multi-flow system by a simple mixing model using stable isotopes of oxygen and hydrogen as natural tracers. Water Resour Res 43:252–258

    Google Scholar 

  • Pang Z, Kong Y, Froehlich K, Huang T, Yuan L, Li Z, Wang F (2011) Processes affecting isotopes in precipitation of an arid region. Tellus Ser B-Chem Phys Meteorol 63:352–359

    Google Scholar 

  • Pang Z, Kong Y, Li J, Tian J (2017) An isotopic geoindicator in the hydrological cycle. Proc Earth Planet Sci 17:534–537

    Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Google Scholar 

  • Pei FP, Xu WL, Yang DB, Zhao QG, Liu XM, Hu ZC (2007) Zircon U–Pb geochronology of basement metamorphic rocks in the Songliao Basin. Chin Sci Bull 52:942–948

    Google Scholar 

  • Petrides B, Cartwright I, Weaver TR (2006) The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria, Australia. Hydrogeol J 14:1522–1543

    Google Scholar 

  • Rattray G (2015) Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA. Environ Earth Sci 73(12):8251–8269

    Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

    Google Scholar 

  • Seiler KP, Gat JR (2007) Groundwater recharge from run-off, infiltration and percolation. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Subyani AM (2004) Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ Geol 46:741–749

    Google Scholar 

  • Sultan M, Sturchio N, Gheith H, Hady YA, Anbeawy M (2000) Chemical and isotopic constraints on the origin of Wadi Eli Tarfa ground water, Eastern Desert, Egypt. Groundwater 38:743–751

    Google Scholar 

  • Sun J, Ye J, Wu W, Ni X, Bi S, Zhang Z, Liu W, Meng J (2010) Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38:515–518

    Google Scholar 

  • Sun W, Zhang E, Liu E, Chang J, Chen R, Shen J (2018) Glacial-interglacial vegetation changes in Northeast China inferred from isotopic composition of pyrogenic carbon from Lake Xingkai sediments. Org Geochem 121:80–88

    Google Scholar 

  • Tang K (1990) Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton. Tectonics 9:249–260

    Google Scholar 

  • Tian F, Wang Y, Liu J, Tang W, Jiang N (2017) Late Holocene climate change inferred from a lacustrine sedimentary sequence in southern Inner Mongolia, China. Quatern Int 452:22–32

    Google Scholar 

  • Vanderzalm JL, Jeuken BM, Wischusen JDH, Pavelic P, Salle CLGL, Knapton A, Dillon PJ (2011) Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid Central Australia. J Hydrol 397:71–82

    Google Scholar 

  • Wada Y, van Beek LPHV, van Kempen CM, Rechman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402. https://doi.org/10.1029/2010GL044571

  • Wang Q, Liu XY (1986) Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China. Tectonics 5:1073–1088

    Google Scholar 

  • Wang W, Feng ZD (2013) Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records. Earth Sci Rev 122:38–57

    Google Scholar 

  • Wang Y, Zhang FQ, Zhang DW, Miao LC, Li TS, Xie HQ, Meng QR, Liu DY (2006) Zircon SHRIMP U–Pb dating of meta-diorite from the basement of the Songliao Basin and its geological significance. Chin Sci Bull 51:1877–1883

    Google Scholar 

  • Webb LE, Johnson CL (2006) Tertiary strike-slip faulting in southeastern Mongolia and implications for Asian tectonics. Earth Planet Sci Lett 241:323–335

    Google Scholar 

  • Webb LE, Johnson CL, Minjin C (2010) Late Triassic sinistral shear in the east Gobi Fault Zone, Mongolia. Tectonophysics 495:246–255

    Google Scholar 

  • Wu FY, Lin JQ, Wilde SA, Sun DY, Yang JH (2005) Nature and significance of the early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233:103–119

    Google Scholar 

  • Wu J, An N, Ji Y, Wei X (2014) Analysis on characteristics of precipitation and runoff in Silas Mu Lun River basin (in Chinese with English Abstract). Meteorol J Inner Mongol 4:23–25

    Google Scholar 

  • Xiao J, Si B, Zhai D, Itoh S, Lomtatidze Z (2008) Hydrology of Dali Lake in Central-Eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol 40:519–528

    Google Scholar 

  • Xu D, Li C, Song X, Ren H (2014) The dynamics of desertification in the farming pastoral region of North China over the past 10 years and their relationship to climate change and human activity. Catena 123:11–22

    Google Scholar 

  • Yang X, Williams MAJ (2003) The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 51:45–60

    Google Scholar 

  • Yang X, Zhu B, Wang X, Li C, Zhou Z, Chen J, Yin J, Lu Y (2008) Late Quaternary environmental changes and organic carbon density in the Hunshandake Sandy land, eastern Inner Mongolia, China. Global Planet Chang 61:70–78

    Google Scholar 

  • Yang X, Ma N, Dong J, Zhu B, Xu B, Ma Z, Liu J (2010) Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quat Res 73:10–19

    Google Scholar 

  • Yang X, Li H, Conacher A (2012) Large-scale controls on the development of sand seas in northern China. Quatern Int 250:74–83

    Google Scholar 

  • Yang X, Wang X, Liu Z, Li H, Ren X, Zhang D, Ma Z, Rioual P, Jin X, Scuderi L (2013) Initiation and variation of the dune fields in semi-arid China: with a special reference to the Hunshandake Sandy land, Inner Mongolia. Quatern Sci Rev 78:369–380

    Google Scholar 

  • Yang X, Scuderi LA, Wang X, Scuderi LJ, Zhang D, Li H, Forman S, Xu Q, Wang R, Huang W, Yang S (2015) Groundwater sapping as the cause of irreversible desertification of Hunshandake Sandy lands, Inner Mongolia, northern China. PNAS 112:702–706

    Google Scholar 

  • Yao S, Zhu Z, Zhang S, Zhang S, Li Y (2013) Using SWAT model to simulate the discharge of the river Shandianhe in Inner Mongolia (in Chinese with English Abstract). J Arid Land Resour Environ 27:175–180

    Google Scholar 

  • Zhai Y, Wang J, Teng Y, Zuo R (2013) Hydrogeochemical and isotopic evidence of groundwater evolution and recharge in aquifers in Beijing Plain, China. Environ Earth Sci 69:2167–2177

    Google Scholar 

  • Zhao L, Xiao H, Dong Z, Xiao S, Zhou M, Cheng G, Yin L, Yin Z (2012) Origins of groundwater inferred from isotopic patterns of the Badain Jaran Desert, Northwestern China. Groundwater 50:715–725

    Google Scholar 

  • Zhao P, Faure M, Chen Y, Shi G, Xu B (2015) A new Triassic shortening-extrusion tectonic model for central-eastern Asia: structural, geochronological and paleomagnetic investigations in the Xilamulun fault (North China). Earth Planet Sci Lett 426:46–57

    Google Scholar 

  • Zhao J, Ma Y, Luo X, Yue D, Shao T, Dong Z (2017) The discovery of surface runoff in the megadunes of Badain Jaran Desert, China, and its significance. Sci Chin Earth Sci 60:707–719

    Google Scholar 

  • Zhou YL, Lu HY, Mason J, Miao XD, Swinehart J, Goble R (2008) Optically stimulated luminescence dating of aeolian sand in the Otindag dune field and Holocene climate change. Sci China Ser D Earth Sci 51:837–847

    Google Scholar 

  • Zhu B, Wang Y (2016) Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia. Environ Monit Assess 188(1):66. https://doi.org/10.1007/s10661-015-5075-4

    Google Scholar 

  • Zhu Z, Wu Z, Liu S, Di X (1980) An outline of Chinese deserts (in Chinese). Science Press, Beijing

    Google Scholar 

  • Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest Chin. J Hydrol 333:239–251

    Google Scholar 

  • Zhu GF, Su YH, Feng Q (2008) The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River basin, Northwest China. Hydrogeol J 16:167–182

    Google Scholar 

  • Zhu B, Yu J, Rioual P, Gao Y, Zhang Y, Xiong H (2015) Climate effects on recharge and evolution of natural water resources in middle-latitude watersheds under arid climate. In: Ramkumar MU, Kumaraswamy K, Mohanraj R (eds) Environmental management of river basin ecosystems. In: Springer Earth System Sciences, Springer, Heidelberg, Germany, pp 91–109

    Google Scholar 

  • Zhu B, Wang X, Rioual P (2017) Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China. J Hydrol 549:92–113

    Google Scholar 

Download references

Acknowledgements

We thank the China Meteorological Data Sharing Service system for providing the weather data. Sincere thanks are also extended to Professor Xiaoping Yang and other colleagues, e.g. Deguo Zhang, Ziting Liu, and Hongwei Li, for their generous help in the research work.

Funding

This study was financially supported by the National Natural Science Foundation of China (41602196), the National Key Research and Development Program of China (2016YFA0601900), and the National Natural Science Foundation of China (41771014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqi Zhu.

Electronic supplementary material

ESM 1

(PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Zhu, B., Liu, M. et al. Mechanism of groundwater recharge in the middle-latitude desert of eastern Hunshandake, China: diffuse or focused recharge?. Hydrogeol J 27, 761–783 (2019). https://doi.org/10.1007/s10040-018-1880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1880-5

Keywords

Navigation