Skip to main content
Log in

Structural-permeability favorability in crystalline rocks and implications for groundwater flow paths: a case study from the Aar Massif (central Switzerland)

Perméabilité structurale favorable dans les roches cristallines et conséquences pour les voies d’écoulement des eaux souterraines: le massif de l’Aar, un cas d’étude (Suisse centrale)

La favorabilidad de la permeabilidad estructural en rocas cristalinas y las implicancias Para las trayectorias del flujo de agua subterránea: un estudio de caso del Macizo de Aar (Suiza central)

结晶岩中构造性渗透率有利度及对地下水水流通道的影响:(瑞士Aar地块的研究案例)

Favorabilidade da permeabilidade estrutural em rochas cristalinas e implicações no fluxo de águas subterrâneas: um estudo de caso no Maciço Aar (Suíça central)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater flow in granitic bedrock is of major interest for underground projects such as radioactive waste disposal. It is generally accepted that granitic rocks of the upper crust are characterized as faulted low-porosity rocks showing fault-related permeability. In this study, the influence of existing faults on the present-day water flow in the Grimsel Test Site (Switzerland), an underground rock laboratory situated in granitoid rocks, was investigated by mapping water discharges. As a result, the link between water flow and faults considering slip-tendency analysis and fault intersections is evaluated. Water-conducting features were combined in a structural-permeability favorability map. Faults and dykes occur as three orientation groups, NE–SW, E–W, and NW–SE trending, all steeply dipping southwards with fault intersections also steeply plunging southwards. In total, 100 water discharges were mapped in summer 2014 and 85 in winter 2016, which are located along faults or fault intersections. A comparison of water discharges with structures showed that high-slip-tendency metabasic dykes and fault or dyke intersections represent the dominant flow paths. Further, it could be demonstrated that higher slip-tendency tends to lead to enhanced average hydraulic conductivity and therefore more constant water flow. Based on water fluxes, fault intersections are inferred to represent first-order locations of water percolation followed by high-slip-tendency metabasic dykes. The combination of all water-conducting features into a structural-permeability map results in covering all water discharges. Therefore, the structural-permeability favorability map can serve as suitable representation for constraining water inflow in fractured granitoid host rocks.

Résumé

L’écoulement des eaux souterraines dans le substratum granitique est d’un intérêt majeur pour les projets souterrains tels que le stockage des déchets radioactifs. Il est généralement admis que les roches granitiques de la croûte supérieure sont caractérisées comme des roches faillées de faible porosité montrant une conductivité hydraulique associée aux failles. Dans cette étude, l’influence des failles existantes sur l’écoulement actuel des eaux dans le site d’essai du Grimsel (Suisse), un laboratoire souterrain situé dans des roches granitoïdes, a été étudiée en cartographiant les sorties d’eau. Par conséquent, le lien entre l’écoulement d’eau et les failles en considérant l’analyse de tendance au glissement et les intersections des failles est évalué. Les caractéristiques conductrices vis-à-vis de l’eau ont été combinées dans une carte de la conductivité hydraulique structurale favorable. Les failles et les dykes se présentent selon trois groupes d’orientation, de tendance NE–SW, E–W, et NW–SE, tous avec un pendage fort vers le Sud avec des intersections de faille plongeant également de manière abrupte vers le Sud. Au total, ce sont 100 sites de sorties d’eau, localisés le long de failles ou d’intersection de failles qui ont été cartographiés à l’été 2014 et 85 à l’hiver 2016. Une comparaison des sorties d’eau avec les structures a montré que les dykes métabasiques à tendance élevée au glissement et les intersections de failles ou de dykes représentent les voies d’écoulement dominantes. De plus, on pourrait démontrer que la tendance au glissement la plus élevée tend à conduire à une augmentation de la conductivité hydraulique moyenne et donc à un écoulement d’eau plus constant D’après les flux d’eau, on déduit que les intersections des failles représentent des emplacements de premier ordre de percolation de l’eau, suivis des dykes métabasiques à tendance au glissement élevé. La combinaison de toutes les caractéristiques conductrices d’eau sur une carte de la conductivité hydraulique structurale permet de couvrir toutes les sorties d’eau. Par conséquent, la carte de conductivité structurale favorable peut servir de représentation appropriée pour limiter l’afflux d’eau dans les roches granitoïdes fracturées hôtes.

Resumen

El flujo de agua subterránea en el basamento granítico es de gran interés para proyectos en el subsuelo, como la eliminación de desechos radiactivos. En general, se acepta que las rocas graníticas de la corteza superior se caracterizan por ser rocas de baja porosidad con fallas que muestran permeabilidad relacionada con el fallamiento. En este estudio, la influencia de las fallas existentes en el flujo real de agua en el sitio de ensayo de Grimsel (Suiza), un laboratorio del subsuelo situado en rocas granitoides, se investigó mediante el mapeo de las descargas de agua. Como resultado, se evalúa el vínculo entre el flujo de agua y las fallas considerando el análisis de tendencias de deslizamiento y las intersecciones de fallas. Las características de la conducción del agua se combinaron en un mapa de favorabilidad de la permeabilidad estructural. Las fallas y los diques ocurren como tres grupos de orientación, NE–SW, E–W y NW–SE, todos con fuertes pendientes hacia el sur con intersecciones de fallas que también se hunden hacia el sur. En total, se asignaron 100 descargas de agua en el verano de 2014 y 85 en el invierno de 2016, que se ubican a lo largo de fallas o intersecciones de fallas. Una comparación de las descargas de agua con las estructuras mostró que los diques metabásicos de alto deslizamiento y las intersecciones de fallas o diques representan las trayectorias de flujo dominantes. Además, podría demostrarse que una mayor tendencia al deslizamiento tiende a conducir a una mejor conductividad hidráulica promedio y, por lo tanto, a un flujo de agua más constante. Con base en los flujos de agua, las intersecciones de fallas se infieren para representar ubicaciones de primer orden de percolación de agua seguidas por diques metabásicos de tendencia de alto deslizamiento. La combinación de todas las características de conducción de agua en un mapa de permeabilidad estructural da como resultado cubrir todas las descargas de agua. Por lo tanto, el mapa de favorabilidad de la permeabilidad estructural puede servir como una representación adecuada para restringir el ingreso de flujo de agua en las rocas granitoides fracturadas.

摘要

花岗岩基岩中的地下水水流是地下项目诸如放射性废物处理项目中主要关注的问题。普遍公认的是,上层地壳的花岗岩特征一般都是断裂的低孔隙岩石,其渗透性显示出与断层相关。在本研究中,在(瑞士)一个位于花岗岩岩石中的地下岩石实验室,即Grimsel试验场,通过绘制水排泄图研究了现有断层对目前水流的影响。因此,还评估了鉴于滑动趋势分析的水流和断层之间的联系以及断层交叉点。在结构性渗透性有利度图中,综合了导水特征。断层和岩脉以三个方向组出现:NE–SW、E–W和NW–SE走向,所有都是向南陡然倾斜,并且断层交叉点也是向南陡然俯冲。总共2014年夏季绘制了100次水排泄,2016年冬季绘制了85次的水排泄,所有这些水排泄都位于沿断层或者沿断层交叉点的地方。水排泄与结构的比较显示,高度滑动趋势的变质基性岩脉和断层或岩脉交叉点为主要水流通道。此外,可以证明,较高的滑动趋势易于导致平均水力传导率增大,因此,使水流更加恒定。根据水通量,推测了断层交叉点,以展示水渗透的一级位置,水渗透之后为高度滑动趋势的变质基性岩脉。把所有导水特征融入结构性渗透性图中就会覆盖所有的水排泄。因此,结构性渗透性有力度图可作为约束断裂花岗岩水流入的合适表现形式。

Resumo

O fluxo de águas subterrâneas em embasamento granítico é de grande interesse para projetos subterrâneos como disposição de rejeito radioativo. É comumente aceito que rochas graníticas da crosta superior são caracterizadas como rochas falhadas de baixa porosidade apresentando permeabilidade relacionada aos falhamentos. Neste estudo, a influência de falhas existentes no fluxo atual de águas no Local de Testes de Grimsel (Suíça), um laboratório subterrâneo situado em rochas graníticas, foi investigada mapeando-se as descargas de água. Como resultado, é avaliada a conexão entre o fluxo de água e o falhamento considerando a análise da tendência de deslizamento e intersecção das falhas. As feições condutoras de água foram combinadas em um mapa de favorabilidade da permeabilidade estrutural. Falhas e diques ocorrem em três grupos de orientações, direções NE–SO, E–O e NO–SE, todos com mergulho alto para sul, com intersecções de falhas também com alto ângulo de mergulho para sul. No total, 100 pontos de descarga de água foram mapeados no verão de 2014 e 85 pontos no inverno de 2016, os quais estão localizados ao longo das falhas ou intersecções de falhas. Uma comparação das descargas de água com as estruturas demonstrou que diques metabásicos com alta tendência de deslizamento e intersecção de falhas ou diques representam os fluxos preferenciais dominantes. Além disso, pode ser demonstrado que maiores tendências de deslizamento tendem a levar a uma maior média de condutividade hidráulica e assim a um fluxo de água mais constante. Com base nos fluxos de água, infere-se que as intersecções de falhas representam locais de primeira ordem para percolação de água, seguidas por diques metabásicos com alta tendência de deslizamento. A combinação de todas as feições condutoras de água em um mapa de permeabilidade estrutural resulta na cobertura de todas as descargas de água. Portanto, o mapa de favorabilidade da permeabilidade estrutural pode servir como uma representação adequada para restringir a entrada de água em granitóides fraturados como rochas hospedeiras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Annunziatellis A, Beaubien SE, Bigi S, Ciotoli G, Coltella M, Lombardi S (2008) Gas migration along fault systems and through the vadose zone in the Latera Caldera (central Italy): implications for CO2 geological storage. Int J Greenhouse Gas Control 2:353–372. https://doi.org/10.1016/j.ijggc.2008.02.003

    Article  Google Scholar 

  • Anderson J, Skagius K, Winderg A, Lindborg T, Ström A (2013) Site-descriptive modelling for a final repository for spent nuclear fuel in Sweden. Environ Earth Sci 69:1045–1060. https://doi.org/10.1007/s12665-013-2226-1

    Article  Google Scholar 

  • Barton CA, Zoback MD (1994) Stress perturbations associated with active faults penetrated by boreholes: possible evidence for near-complete stress drop and a new technique for stress magnitude measurement. J Geophys Res 99:9373–9390

    Article  Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686. https://doi.org/10.1130/0091-7613(1995)023<0683

    Article  Google Scholar 

  • Belgrano TM, Herwegh M, Berger A (2016) Inherited structural controls on fault geometry, architecture and hydrothermal activity: an example from Grimsel Pass, Switzerland. Swiss J Geosci 109:345–364. https://doi.org/10.1007/s00015-016-0212-9

    Article  Google Scholar 

  • Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth Sci Rev 127:171–192. https://doi.org/10.1016/j.earscirev.2013.09.008

    Article  Google Scholar 

  • Berger A, Mercolli I, Herwegh M, Gnos E (2017) Geological map of the Aar Massif, Tavetsch and Gotthard nappes 1: 100 000. Geological special map 129, Swisstopo, Wabern, Switzerland

  • Blechschmidt I, Vomvoris S (2010) Underground research facilities and rock laboratories for the development of geological disposal concepts and repository systems. In: Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste. pp 82–118. https://doi.org/10.1533/9781845699789.1.82

    Chapter  Google Scholar 

  • Bossart P, Mazurek M (1991) structural geology and water flow-paths in the migration shear-zone. Nagra technical report NTB 91-12, Nagra, Wettingen, Switzerland

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • Bradbury MH (1989) Grimsel test site: laboratory investigations in support of the migration experiments. Nagra technical report, NTB 88-23, Nagra, Baden, Switzerland

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 615–626

  • Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps). Swiss J Geosci 101:269–288. https://doi.org/10.1007/s00015-008-1260-6

    Article  Google Scholar 

  • Choukroune P, Gapais D (1983) Strain pattern in the Aar granite (Central Alps): orthogneiss developed by bulk inhomogeneous flattening. J Struct Geol 5:411–418

    Article  Google Scholar 

  • Curewitz D, Karson JA (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79:149–168. https://doi.org/10.1016/S0377-0273(97)00027-9

    Article  Google Scholar 

  • Degueldre C, Baeyens B, Goerlich W, Riga J, Verbist J, Stadelmann P (1989) Colloids in water from subsurface fracture in granitic rock, Grimsel Test Site, Switzerland. Geochim Cosmochim Acta 53:603–610

    Article  Google Scholar 

  • Diamond LW, Tarantola A (2015) Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: reconstruction of differential stress magnitudes and pre-deformation fluid properties. Earth Planet Sci Lett 417:107–119. https://doi.org/10.1016/j.epsl.2015.02.019

    Article  Google Scholar 

  • Dockrill B, Shipton ZK (2010) Structural controls on leakage from a natural CO2 geologic storage site: central Utah, U.S.A. J Struct Geol 32:1768–1782. https://doi.org/10.1016/j.jsg.2010.01.007

    Article  Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19:1393–1404

    Article  Google Scholar 

  • Evans KF, Engelder T (1989) Some problems in estimating horizontal stress magnitude in thrust regimes. Int J Rock Mech Min Sci Geomech Abstr 26:647–660

    Article  Google Scholar 

  • Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009

    Article  Google Scholar 

  • Figueiredo B, Tsang C-F, Niemi A, Lindgren G (2016) Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations. Hydrogeol J 24:1607–1622. https://doi.org/10.1007/s10040-016-1415-x

    Article  Google Scholar 

  • Frick U, Alexander WR, Baeyens B, Bossart P, Bradbury MH, Bühler C, Eikenberg J, Fierz T, Heer W, Hoehn E, Mckinley IG, Smith PA (1992) The radionuclide migration experiment: overview of investigations 1985–1990. Nagra technical report NTB 91–04, Nagra, Wettingen, Switzerland

  • Frieg B, Blaser PC (eds) (2012) Grimsel Test Site: Excavation Disturbed Zone Experiment (EDZ). Nagra technical report 98-01, Nagra, Wettingen, Switzerland

  • Gimmi T, Schneebeli M, Flühler H, Wydler H, Baer T (1997) Field-scale water transport in unsaturated crystalline rock. Water Resour Res 33:589–598

    Article  Google Scholar 

  • Glotzbach C, Reinecker J, Danišík M, Rahn M, Frisch W, Spiegel C (2010) Thermal history of the central Gotthard and Aar massifs, European Alps: evidence for steady state, long-term exhumation. J Geophys Res 115:1–24. https://doi.org/10.1029/2009jf001304

    Article  Google Scholar 

  • Goncalves P, Oliot E, Marquer D, and Connolly JAD. (2012) Role of chemical processes on shear zone formation: an example from the Grimsel metagranodiorite Aar massif, Central Alps: J. Metmorphic Geol., 30, 703–722

    Article  Google Scholar 

  • Herwegh M, Berger A, Baumberger R, Wehrens P, Kissling E (2017) Large-scale crustal-block-extrusion during late alpine collision. Sci Rep 7. https://doi.org/10.1038/s41598-017-00440-0

  • Hoehn E, Fierz T, Thorne P (1990) Hydrogeological characterisation of the migration experiment area at the Grimsel Test Site. Nagra technical report NTB 89-14, Nagra, Wettingen, Switzerland

  • Jaeger JC, Cook NG (1971) Fundamentals of rock mechanics. Chapman and Hall, London

    Google Scholar 

  • Keppler A (1994) Hydrogeologische, hydrochemische und isotopenhydrologische Untersuchungen an den Oberflächen- und Kluftwässern im Grimselgebiet, Schweiz [Hydrogeological, hydrochemical and isotope hydrological investigations on the surface and fracture waters in the Grimsel area, Switzerland]. PhD Thesis, Ludwig-Maximilians-Universität, Munich, Germany

  • Keusen HR, Ganguin J, Schuler P, Buletti M (1989) Felslabor Grimsel: Geologie [Grimsel Test Site: geology]. Nagra technical report NTB 87-14, Nagra, Baden, Switzerland

  • Koike K, Kubo T, Liu C, Masoud A, Amano K, Kurihara A, Matsuko T, Lanyon B (2015) 3D geostatistical modeling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution. Tectonophysics 660:1–16. https://doi.org/10.1016/j.tecto.2015.06.008

    Article  Google Scholar 

  • Kralik M, Clauer N, Holnsteiner R, Huemer H, Kappel F (1992) Recurrent fault activity in the Grimsel test site (GTS, Switzerland): revealed by Rb-Sr, K-Ar and tritium isotope techniques. J Geol Soc Lond 149:293–301

    Article  Google Scholar 

  • Krietsch H, Gischig V, Jalali MR, Amann F, Evans KF, Doetsch J, Valley B (2017) Stress measurements in crystalline rock: comparison of overcoring, hydraulic fracturing and induced seismicity results. American Rock Mechanics Association, Alexandria, VA

  • Kull H, Brewitz W, Klarr K (1993) Ventilation test: in-situ-experiment for determination of permeability in crystalline rock. Nagra technical report NTB 91-02E, Nagra, Wettingen, Switzerland

  • Lisle RJ, Srivastava DC (2004) Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology 32:569–572. https://doi.org/10.1130/G20408.1

    Article  Google Scholar 

  • Lunn RJ, Shipton ZK, Bright AM (2008) How can we improve estimates of bulk fault zone hydraulic properties? J Geol Soc Lond 299:1–7

    Article  Google Scholar 

  • Mäder UK, Ekberg C (2006) Geochemical evolution of porewater in the granitic shear zone AU-126 during 3 years of interaction with hyperalkaline fluid, and its interpretation. Nagra Arbeitsbericht NAB 06-08, Nagra, Wettingen, Switzerland

  • Mandl G (2000) Faulting in brittle rocks. Springer, Heidelberg, Germany

    Book  Google Scholar 

  • Martel SJ, Peterson JE (1991) Interdisciplinary characterization of fracture systems at the US/BK site, Grimsel Laboratory, Switzerland. Int J Rock Mech Min Sci Geomech Abstr 28:295–323. https://doi.org/10.1016/0148-9062(91)90596-E

    Article  Google Scholar 

  • Martin CD, Christiansson R (1991) Overcoring in highly stressed granite: comparison of the USBM and modified CSIR devices. Rock Mech Rock Eng 24:207–235

    Article  Google Scholar 

  • Martin D (2007) Quantifying in situ stress magnitudes and orientations for Forsmark. Svensk Kärnbränslehantering, SKB R-07-26, SKB, Stockholm

  • Martinez-Landa L, Carrera J (2005) An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland). Water Resour Res 41(3):1–13. https://doi.org/10.1029/2004wr003458

    Article  Google Scholar 

  • Mazurek M (2000) Geological and hydraulic properties of water-conducting features in crystalline rocks. In: Stober I, Bucher K (eds) Hydrogeology of crystalline rocks. Springer, Dordrecht, The Netherlands, pp 3–26

    Chapter  Google Scholar 

  • Mazurek M, Jakob A, Bossart P (2003) Solute transport in crystalline rocks at Aspo, I: geological basis and model calibration. J Contam Hydrol 61:157–174

    Article  Google Scholar 

  • Meier PM, Medina A, Carrera J (2001) Geostatistical inversion of cross-hole pumping tests for identifying preferential flow channels within a shear zone. Ground Water 39:10–17

    Article  Google Scholar 

  • Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24:275–278. https://doi.org/10.1130/0091-7613(1996)024<0275

    Article  Google Scholar 

  • Morris AP, Ferrill DA, Mcginnis RN (2016) Using fault displacement and slip tendency to estimate stress states. J Struct Geol 83:60–72. https://doi.org/10.1016/j.jsg.2015.11.010

    Article  Google Scholar 

  • Oberhänsli R (1986) Geochemistry of meta-lamprophyres from the Central Swiss Alps. Schweizerische Mineral Petrogr Mitteil 66:315–342

    Google Scholar 

  • Pahl A, Bräuer V, Heusermann S, Kilger B, Liedtke L (1986) Results of engineering geological research in granite. Bull Int Assoc Eng Geol 34:59–65

    Article  Google Scholar 

  • Pfiffner OA (1993) The structure of the Alps: an introduction. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology of the Alps. Springer, Heidelberg, Germany

    Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2009) Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping. Appl Geomat 1:3–15. https://doi.org/10.1007/s12518-009-0001-5

    Article  Google Scholar 

  • Reinecker J, Danišík M, Schmid C, Glotzbach C, Rahn M, Frisch W, Spiegel C (2008) Tectonic control on the late stage exhumation of the Aar Massif (Switzerland): constraints from apatite fission track and (U-Th)/He data. Tectonics 27:1–17. https://doi.org/10.1029/2007tc002247

    Article  Google Scholar 

  • Rolland Y, Cox SF, Corsini M (2009) Constraining deformation stages in brittle–ductile shear zones from combined field mapping and 40Ar/39Ar dating: the structural evolution of the Grimsel Pass area (Aar Massif, Swiss Alps). J Struct Geol 31:1377–1394. https://doi.org/10.1016/j.jsg.2009.08.003

    Article  Google Scholar 

  • Schaltegger U (1994) Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating: a review. Schweizerische Mineral Petrogr Mitteil 74:41–51. https://doi.org/10.5169/seals-56330

  • Schaltegger U, Corfu F (1992) The age and source of Late Hercynian magmatism in the Central Alps: evidence from precise U-Pb ages and initial Hf isotopes. Contrib Mineral Petrol 111:329–344

    Article  Google Scholar 

  • Schneeberger R (2017) Interplay in 3D between faults and water flow path. PhD Thesis, University of Bern, Switzerland

  • Schneeberger R, Berger A, Herwegh M, Eugster A, Kober F, Spillmann T, Blechschmidt I (2016) GTS phase VI - LASMO: geology and structures of the GTS and Grimsel region. Nagra Arbeitsbericht NAB 16-27, Nagra, Wettingen, Switzerland

  • Schneeberger R, de la Varga M, Egli D, Berger A, Kober F, Wellmann JF, Herwegh M (2017) Methods and uncertainty-estimations of 3D structural modelling in crystalline rocks: a case study. Solid Earth 8:987–1002. https://doi.org/10.5194/se-2017-47

    Article  Google Scholar 

  • Siler DL, Faulds JE, Mayhew B, McNamara DD (2016) Analysis of the favorability for geothermal fluid flow in 3D: Astor Pass geothermal prospect, Great Basin, northwestern Nevada, USA. Geothermics 60:1–12. https://doi.org/10.1016/j.geothermics.2015.11.002

    Article  Google Scholar 

  • Tanaka Y, Miyakawa K, Fukahori D, Kiho K, Goto K (2014) Survey of flow channels in rock mass fractures by resin injections. 8th Asian Rock Mechanics Symposium, Sapporo, Japan, October 2014

  • Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28:399–402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO

    Article  Google Scholar 

  • Tsang CF, Neretnieks I, Tsang Y (2015) Hydrologic issues associated with nuclear waste repositories. Water Resour Res 51(9):6923–6972. https://doi.org/10.1002/2015WR017641

    Article  Google Scholar 

  • Voborny O, Adank P, Hürlimann W, Vomvoris S, Mishra S (1991) Grimsel Test Site: modeling of groundwater flow in the rock body surrounding the underground laboratory. Nagra technical report NTB 91-03, Nagra, Wettingen, Switzerland

  • Vomvoris S, Frieg B, Bossart P, Gmünder C, Heiniger P, Jaquet O, Watanabe K (1992) Grimsel Test Site: overview of Nagra field and modeling activities in the Ventilation Drift (1988–1990). Nagra technical report NTB 91–34, Nagra, Wettingen, Switzerland

  • Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59:118–130

    Article  Google Scholar 

  • Wehrens P (2015) Structural evolution in the Aar Massif (Haslital transect): implications for mid-crustal deformation. PhD Thesis, University of Bern, Switzerland

  • Wehrens P, Berger A, Peters M, Spillmann T, Herwegh M (2016) Deformation at the frictional-viscous transition: evidence for cycles of fluid-assisted embrittlement and ductile deformation in the granitoid crust. Tectonophysics 693:66–84. https://doi.org/10.1016/j.tecto.2016.10.022

    Article  Google Scholar 

  • Wehrens P, Baumberger R, Berger A, Herwegh M (2017) How is strain localized in a mid-crustal basement section? Spatial distribution of deformation in the Aar Massif (Switzerland). J Struct Geol 94:47–67. https://doi.org/10.1016/j.jsg.2016.11.004

    Article  Google Scholar 

  • Wibberley CAJ, Yielding G, Di Toro G (2008) Recent advances in the understanding of fault zone internal structure: a review. Geol Soc Lond Spec Publ 299:5–33. https://doi.org/10.1144/SP299.2

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zoback MD, Townend J (2001) Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics 336:19–30. https://doi.org/10.1016/S0040-1951(01)00091-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Nagra staff in the Grimsel Test Site for the excellent working environment. Furthermore, two anonymous reviewers and the anonymous associate editor are thanked for thorough reviews that greatly improved the manuscript. Jens Becker, Nagra, is thanked for reviewing of an earlier version of the manuscript.

Funding

This study was part of the LASMO project run, jointly funded by NAGRA, RWM, and SURAO, which are acknowledged for funding the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Schneeberger.

Electronic supplementary material

ESM 1

(PDF 820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneeberger, R., Egli, D., Lanyon, G.W. et al. Structural-permeability favorability in crystalline rocks and implications for groundwater flow paths: a case study from the Aar Massif (central Switzerland). Hydrogeol J 26, 2725–2738 (2018). https://doi.org/10.1007/s10040-018-1826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1826-y

Keywords

Navigation